TU Darmstadt
| Home      | FB 4      | TU Darmstadt 
Discrete Optimization
Nonlinear Optimization
   About us
   Secretary's Office
Global Optimization
Discrete Geometry
Algorithmic Discrete Mathematics
Staff members
Jobs and Scholarships
Previous Seminars
How to find us
Technical Report

Numerical Solution of Optimal Control Problems Governed by the Compressible Navier-Stokes Equations

S. Scott Collis+, Kaveh Gayour+*, Matthias Heinkenschloss*,

Michael Ulbrich**, and Stefan Ulbrich**

+Department of Mechanical Engineering and Materials Science
Rice University, Houston, TX 77005-1892, USA

*Department of Computational and Applied Mathematics
Rice University, Houston, TX 77005-1892, USA

**Lehrstuhl für Angewandte Mathematik und Mathematische Statistik
Zentrum Mathematik
Technische Universität München

November 2000

Technical Report
Zentrum Mathematik
Technische Universität München

In: Optimal Control of Complex Structures
K.-H. Hoffmann, I. Lasiecka, G. Leugering, J. Sprekels, and F. Tröltzsch (eds.)
Birkhäuser Verlag, 2001.

as PDF file (504k).


Theoretical and practical issues arising in optimal boundary control of the unsteady two-dimensional compressible Navier-Stokes equations are discussed. Assuming a sufficiently smooth state, formal adjoint and gradient equations are derived. For a vortex rebound model problem wall normal suction and blowing is used to minimize cost functionals of interest, here the kinetic energy at the final time.