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Abstract. We present a class of inexact adaptive multilevel trust-region SQP-methods for the
efficient solution of optimization problems governed by nonlinear partial differential equations. The
algorithm starts with a coarse discretization of the underlying optimization problem and provides
during the optimization process 1) implementable criteria for an adaptive refinement strategy of the
current discretization based on local error estimators and 2) implementable accuracy requirements
for iterative solvers of the linearized PDE and adjoint PDE on the current grid. We prove global
convergence to a stationary point of the infinite–dimensional problem. Moreover, we illustrate how
the adaptive refinement strategy of the algorithm can be implemented by using existing reliable a
posteriori error estimators for the state and the adjoint equation. Numerical results are presented.

Key words. Optimal control, adaptive mesh adaptation, PDE constraints, finite elements, a
posteriori error estimator, trust-region methods, inexact linear system solvers.

1. Introduction. In this paper we introduce and analyze a class of adaptive
multilevel inexact sequential quadratic programming (SQP) methods for the solution
of nonlinear PDE-constrained optimization problems. Nowadays, adaptive discretiza-
tion techniques for partial differential equations based on a posteriori error estimators
are well established to obtain accurate solutions with considerably less grid points
than in the case of uniform meshes. In the context of optimization adaptive mesh re-
finement offers the potential to perform most of the optimization iterations on coarse
meshes and to approach the infinite-dimensional problem during optimization in an
efficient way.

We consider PDE–constrained optimization problems of the form

(1.1) min
y∈Y,u∈U

f(y, u) subject to C(y, u) = 0,

where U is the control space, Y is the state space, f : Y × U → R is the objective
function. The state equation C : Y × U → V ∗, C(y, u) = 0 comprises a (system of)
partial differential equation(s) with appropriate initial and/or boundary conditions
in a variational formulation with V as the set of test functions. Here V ∗ denotes as
usual the dual space of V .

It would be possible to include constraints on the control u in our approach
without significant changes. We leave this issue to a forthcoming paper.

We assume that Y and U are Hilbert spaces and that V is a reflexive Banach
space. Moreover, let f and C be twice continuously Fréchet differentiable.

Often, the PDE constraint is given by a variational formulation of the form

a(y; v) = b(u; v) ∀ v ∈ V.

In this case, C(y, u) is given by

C : Y × U → V ∗, C(y, u) = a(y; ·)− b(u; ·) ∈ V ∗.
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The proposed multilevel SQP-algorithm for (1.1) generates a hierarchy of finite-
dimensional approximations

(1.2) min
yh∈Yh,uh∈Uh

f(yh, uh) subject to Ch(yh, uh) = 0,

which result from conformal discretizations, e.g. by the finite element method, of
(1.1) on adaptively refined meshes. Our assumptions on the conformal discretization
will be made precise in section 2.

In this paper we develop an implementable adaptive refinement strategy based on
error estimators and combine it with an efficient inexact composite-step trust-region
SQP method inspired by [18, 28]. The resulting adaptive multilevel SQP-method
generates a hierarchy of adaptive discretizations (1.2), controls the inexactness of
iterative solvers on the current grid and refines the grid – if necessary – adaptively
in an appropriate way based on local error estimators, e.g. [1, 8, 9, 11, 30, 32],
to ensure convergence to the solution of the original problem (1.1). We will prove
global convergence under standard assumptions to a first–order optimality point of
the infinite–dimensional problem (1.1).

The major advantages of the multilevel approach are that most optimization iter-
ations are carried out on coarse meshes while the accuracy of the optimization result
is controlled, since the mesh adaptation is tailored to the needs of the optimization
method. This offers the possibility to obtain optimization results of high accuracy by
an effort of a few simulation runs.

In recent years, multilevel techniques in optimization have received considerable
attention [6, 7, 14, 15, 16, 23, 29]. These approaches focus on the efficient use of a
hierarchy of discretizations to solve an optimization problem on the finest grid. [6, 7]
consider multigrid solvers for the optimality system of PDE-constrained problems
without globalization, [7] studies such methods with control constraints and [6] with
state constraints. [15, 16, 23, 29] apply multigrid ideas in a recursive fashion for
optimization problems, the coupling with adaptive mesh refinement is not considered.
The rigorous combination of adaptive error control techniques and modern globally
convergent optimization techniques, which is the topic of this paper, was so far to the
best of our knowledge not considered. On the other hand, a posteriori error estimators
in the context of PDE-constrained optimization are an active research area [2, 3, 4,
20, 19, 24]. The rigorous imbedding of error estimators in multilevel optimization
methods was to the best of our knowledge not considered so far. Truncated Newton
methods in the presence of inexact function and gradient evaluations were studied in
[22], but the combination with error estimators was not considered. [26] proposes a
general algorithmic framework based on consistent approximations for optimal control
problems which deals with approximate function and gradient evaluations in steepest
descent algorithms. The accuracy control mechanism requires an error estimator for
the function and gradient value depending on a scalar mesh parameter and is very
different from the approach in this paper.

The purpose of this paper is to provide a rigorous framework for the combina-
tion of efficient and robust inexact SQP-methods with appropriate a posteriori error
estimators. For the solution of the auxiliary trust-region problems, our method offers
the possibility to use any kind of iterative solver, in particular the above mentioned
multilevel solvers.

The paper is organized as follows. In section 2 we describe the optimality con-
ditions and introduce our notations for the discretized problems. In section 3 we
start with basic notations and requirements for inexact SQP methods followed by
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a description of the basic components of our multilevel composite–step trust–region
SQP algorithm before we state the refinement criteria and the algorithm itself. The
convergence analysis can be found in section 4. In section 5 we show how the inexact-
ness in linear equation solves and how the decrease conditions can be satisfied in an
implementation. Averaging and residual based error estimators for a general semilin-
ear elliptic PDE with inexact states can be found in section 6. Numerical results are
presented in section 7.

We will often use the following notation: X := Y × U, x = (y, u) ∈ X.

2. Optimality conditions and discretization.

2.1. Optimality conditions. Let Gw denote the Fréchet derivative of an op-
erator G w.r.t. a variable w, e.g. Cy denotes the Fréchet derivative of the PDE-
constraint operator C with respect to the state y. Throughout the paper we assume
that Cy(y, u) ∈ L(Y, V ∗) has an bounded inverse. Let

(2.1) l : Y × U × V → R, l(y, u, λ) = f(y, u) + 〈λ,C(y, u)〉V,V ∗

denote the Lagrangian function, where 〈λ,C(y, u)〉V,V ∗ denotes the dual pairing. Note
that V ∗∗ = V and thus λ ∈ V ∗∗ = V .

Let (ȳ, ū) be an optimal solution of problem (1.1). Then the following first–
order necessary optimality conditions hold: There exists an adjoint state (Lagrange
multiplier) λ̄ ∈ V such that

ly(ȳ, ū, λ̄) = fy(ȳ, ū) + Cy(ȳ, ū)∗λ̄ = 0,
lu(ȳ, ū, λ̄) = fu(ȳ, ū) + Cu(ȳ, ū)∗λ̄ = 0,
C(ȳ, ū) = 0.

(2.2)

Thus, the adjoint state λ̄ is uniquely determined by λ̄ = −Cy(ȳ, ū)−∗fy(ȳ, ū), since
Cy(ȳ, ū) has a bounded inverse.

2.2. Discretized problem. For simplicity we assume that problem (1.1) is ap-
proximated by a conformal finite element discretization. More precisely, let Yh ⊂ Y ,
Vh ⊂ V be finite element subspaces on a triangulation Th of the computational domain
Ω consisting of closed cells T . The mesh parameter h is defined as a cell-wise constant
function by setting h|T = hT and hT is the diameter of T . The mesh Th is assumed to
be shape regular. Morover, we introduce a finite dimensional subspace Uh ⊂ U of the
control space. Depending on the concrete situation there are different possibilities to
choose the space Uh. It is reasonable to set Uh = U if U is finite dimensional. We set
Xh := Yh × Uh.

We assume that the discretized PDE-constraint Ch : Yh × Uh → V ∗h is given by
the conformal finite element discretization

(2.3) 〈Ch(yh, uh), vh〉V ∗
h ,Vh

:= 〈C(yh, uh), vh〉V ∗,V ∀ vh ∈ Vh.

The discretized optimization problem is then given by

(1.2) min
yh∈Yh,uh∈Uh

f(yh, uh) subject to Ch(yh, uh) = 0,

and the Lagrangian function of the discretized problem by

lh : Yh × Uh × Vh → R,
lh(yh, uh, λh) = f(yh, uh) +

〈
λh, Ch(yh, uh)

〉
V,V ∗ = l(yh, uh, λh),
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where the last identity follows from (2.3).
Similar to (2.2) the optimality conditions at a local solution (ȳh, ūh) of the dis-

cretized problem (1.2) read with an appropriate Lagrange multiplier λ̄h ∈ Vh

〈ly(ȳh, ūh, λ̄h), wh
y 〉Y ∗,Y = 0 ∀wh

y ∈ Yh,

〈lu(ȳh, ūh, λ̄h), wh
u〉U∗,U = 0 ∀wh

u ∈ Uh,

〈C(ȳh, ūh), wh
λ〉V ∗,V = 0 ∀wh

λ ∈ Vh.

(2.4)

For given (xh, λh) ∈ Xh × Vh the residuals in the original optimality system (2.2) are
given by

‖ly(xh, λh)‖Y ∗ = sup
wy∈Y,‖wy‖Y =1

〈ly(xh, λh), wy〉Y ∗,Y ,

‖lu(xh, λh)‖U∗ = sup
wu∈U,‖wu‖U=1

〈lu(xh, λh), wu〉U∗,U ,

‖C(xh)‖V ∗ = sup
vλ∈V,‖vλ‖V =1

〈C(xh), vλ〉V ∗,V ,

and the residuals of the discrete optimality system (2.4) by

‖ly(xh, λh)‖Y ∗
h

= sup
wh

y∈Yh,‖wh
y‖Y =1

〈ly(xh, λh), wh
y 〉Y ∗,Y ,

‖lu(xh, λh)‖U∗h
= sup

wh
u∈Uh,‖wh

u‖U=1

〈lu(xh, λh), wh
u〉U∗,U ,

‖C(xh)‖V ∗
h

= sup
vh

λ∈Vh,‖vh
λ‖V =1

〈C(xh), vh
λ〉V ∗,V .

Note that the inequality ‖C(xh)‖V ∗ ≥ ‖C(xh)‖V ∗
h

always holds. We assume that
we are able to calculate norms in V ∗h .
By refining the meshes we can generate a hierarchy of approximations.

Derivatives of functions from the discrete problem will also be denoted by subset
variables, since by inserting the discrete values they can be defined via dual pairings
in infinite dimensions which can be calculated as a vector vector product, e.g.

〈(Ch
y (xh))∗λh, wh

y 〉Y ∗
h ,Yh

= 〈(Cy(xh))∗λh, wh
y 〉Y ∗,Y .

Example 2.1. Consider the problem (Problem 7.1 in section 7.1)

min
y∈H1

0 (Ω),u∈L2(Ω)
f(y, u) := 1

2‖y − yd‖2L2(Ω) + α
2 ‖u‖

2
L2(Ω)

s.t. −∆y + y3 = u in Ω,
y = 0 on ∂Ω,

where Ω ⊂ R2 is a polygonal domain, yd ∈ H1
0 (Ω) and α > 0. Here, the state equation

has to be understood in the weak sense, more presicely, the state equation is given by
the variational equation∫

Ω

(∇y · ∇v + y3v − uv) dx = 0 ∀ v ∈ H1
0 (Ω).

Therefore, we set Y = V := H1
0 (Ω), U := L2(Ω), V = Y ∗ and define

C : (y, u) ∈ Y × U 7→ C(y, u) ∈ V ∗ = Y ∗,

〈C(y, u), v〉V ∗,V := a(y; v)− b(u; v), v ∈ V,
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with

a(y; v) =
∫

Ω

(∇y · ∇v + y3v) dx, b(u; v) =
∫

Ω

uv dx.

The Lagrangian function is thus given by

l(y, u, λ) = f(y, u) + 〈C(y, u), λ〉V ∗,V = f(y, u) + a(y;λ)− b(u;λ).

Now let Yh = Vh ⊂ Y and Uh ⊂ U be finite dimensional subspaces. Then the confor-
mal discretization is given by

min
yh∈Yh,uh∈Uh

f(yh, uh) := 1
2‖y

h − yd‖2L2(Ω) + α
2 ‖u

h‖2L2(Ω)

s.t. Ch(yh, uh) = 0,

where

Ch : (yh, uh) ∈ Yh × Uh 7→ Ch(yh, uh) ∈ V ∗h = Y ∗h ,

〈Ch(yh, uh), vh〉V ∗
h ,Vh

:= a(yh; vh)− b(yh; vh) = 〈C(yh, uh), vh〉V ∗,V , vh ∈ Vh = Yh.

The discrete Lagrangian function lh is just the restriction of l

lh(yh, uh, λh) = f(yh, uh) + a(yh;λh)− b(uh;λh) = l(yh, uh, λh).

3. A multilevel trust–region SQP algorithm.

3.1. Main components of our multilevel trust–region SQP algorithm.
In this section we give a brief introduction to trust–region SQP methods and intro-
duce the main components of our multilevel trust–region SQP algorithm. For further
information on trust–region techniques we refer to [12] and for inexact trust–region
techniques to [18].

In a classical local SQP method one minimizes a quadratic approximation of
the Lagrangian function l in the current iterate (xh

k , λ
h
k) subject to the linearized

constraint. That is, one computes the next iterate xh
k+1 as xh

k+1 = xh
k + sk where sk

solves the SQP-problem at (xh
k , λ

h
k)

min
s∈Xh

qk(s) := lk + 〈(lx)k, s〉X∗,X + 1
2 〈s,Hks〉X,X∗

subject to Ch
k + (Ch

x )ks = 0

with xh
k = (yh

k , u
h
k), lk = l(xh

k , λ
h
k), (lx)k = lx(xh

k , λ
h
k), Hk ≈ lxx(xh

k , λ
h
k), Ch

k = Ch(xh
k),

(Ch
x )k = Ch

x (xh
k) and accordingly all other abbreviations throughout the paper.

Note that by the conformity of the discretization, see in particular (2.3), Ch
k +

(Ch
x )ks = 0 is equivalent to ‖Ch

k + (Ch
x )ks‖V ∗

h
= 0 and qk(s) can also be written in

terms of lh, more precisely,

qk(s) := lhk + 〈(lhx)k, s〉X∗
h,Xh

+ 1
2 〈s,Hks〉Xh,X∗

h
.

Since it is helpful to view our algorithm as a method for (1.1) that works with a
hierarchy of adaptive discretizations, we will sometimes prefer to use l instead of lh,
since lh is only the restriction of l to the current subspaces.
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One way to globalize a local SQP-method is using trust-region techniques. The
idea is to trust the quadratic approximation of the Lagrangian funtion and the lin-
earized constraint only in a trust-region which is adjusted during the algorithm to the
quality of the approximations. Since the local SQP problem may become infeasible
when joining an additional trust-region constraint ‖s‖ ≤ ∆k for a trust–region radius
∆k > 0 one uses a step decomposition as suggested for example by Byrd, Omojokun
[10, 25] and Dennis, El Alem, Maciel [13]. Here the step sk is split into a sum of two
steps, the quasi-normal step sn = (sn

y , 0) to improve feasibility and the tangential step
st = (st

y, su) to improve optimality.

3.1.1. Quasi–normal step towards feasibility. First, we compute a quasi–
normal step sn

k , which is responsible for moving towards feasibility. Since we assume
that Ch

y (xh) is invertible, we perform the quasi–normal step only in the state variables.
The y–component of sn

k is an approximate solution of

(3.1)
minsn

y∈Yh
‖(Ch

y )ks
n
y + Ch

k ‖V ∗
h

s.t. ‖sn
y‖Y ≤ ∆k,

and the u–component is given by sn
u,k = 0. Subproblem (3.1) is not solved exactly.

A rather coarse solution is sufficient to ensure basic global convergence. The quasi–
normal component is required to satisfy a Fraction of Cauchy Decrease condition

(3.2) ‖Ch
k ‖2V ∗

h
− ‖(Ch

y )ks
n
y + Ch

k ‖2V ∗
h
≥ κ1‖Ch

k ‖V ∗
h

min
{
κ2‖Ch

k ‖V ∗
h
,∆k

}
for all k ∈ N, where κ1, κ2 ∈ (0, 1) are fixed constants independent of k and the grid.
It is well known, that for example the Steihaug-CG method or a truncated Newton
step, which is scaled back into the trust region if necessary, satisfies (3.2).

Remark 3.1. Usually, there exists already an efficient iterative solver for the
linearized state equation (Ch

y )ks
n
y + Ch

k = 0. Then sn
k can be computed as an inexact

solution, which is scaled back into the trust region. See section 5.2 for more details.

3.1.2. Tangential step towards optimality. In a second step, the trust–
region SQP-algorithm computes a tangential step st

k which is responsible for mov-
ing towards optimality but has to maintain linearized feasible, i.e. has to be in the
nullspace of the linearized constraints. Let qk be the quadratic approximation of the
Lagrangian function in (xh

k , λ
h
k)

(3.3) qk(s) := lk + 〈(lx)k, s〉X∗,X + 1
2 〈s,Hks〉X,X∗ ,

where Hk is a symmetric approximation to the Hessian of the Lagrangian function in
(xh

k , λ
h
k). We will assume that the sequence of approximated Hessians is bounded.

The tangential step is then an approximate solution of

(3.4)
minst∈Xh

qk(sn
k + st)

s.t. (Ch
y )ks

t
y + (Ch

u )ksu = 0,
‖su‖U ≤ ∆k

Note that the tangential equation in the constraint is a variational equation for test
functions from the finite element space Vh. Consequently, the residual in the tangential
equation must be orthogonal on a basis of Vh. We can reduce qk(sn

k +st) to the control-
component su of the tangential step st by solving the tangential equation

(3.5) (Ch
y )ks

t
y + (Ch

u )ksu = 0,
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i.e.

st
y = −(Ch

y )−1
k (Ch

u )ksu

Defining Wk by

Wk =
(
−(Ch

y )−1
k (Ch

u )k

I

)
∈ L(Uh, Yh × Uh)

we obtain st = Wksu and we arrive at the reduced quadratic approximation of the
Lagrangian

(3.6) q̂k(su) := qk(sn
k ) + 〈W ∗

k (Hks
n
k + (lx)k), su〉+ 1

2 〈su,W
∗
kHkWksu〉.

Thus, we can write the tangential problem entirely in su

(3.7)
minsu∈Uh

q̂k(su)
s.t. ‖su‖U ≤ ∆k,

but have afterwords to compute st
y by using (3.5).

Now we allow inexactness in the derivatives and the solutions of linear systems.
Instead of computing the reduced gradient by W ∗

k (Hks
n
k + (lx)k) we solve the adjoint

equation after the quasi-normal step on the current grid

(3.8) ly(xh
k , λ

h
k + ∆λh

k) + (Hks
n
k )(y) = 0 in Y ∗h

in the variable ∆λh
k sufficiently well (index (y) denotes the y-component) such that

the following accuracy condition is satisfied
(3.9)
‖ly(xh

k , λ
h
k + ∆λh

k) + (Hks
n
k )(y)‖Y ∗

h
≤ κλ min{‖lu(xh

k , λ
h
k + ∆λh

k) + (Hks
n
k )(u)‖U∗h

,∆k},

where ∆k denotes the trust-region radius and κλ > 0. A similar criterion was proposed
in [18]. We define the inexact reduced gradient ĝh

k as approximation to the reduced
gradient of q̂k by

(3.10) ĝh
k := lu(xh

k , λ
h
k + ∆λh

k) + (Hks
n
k )(u).

Any suitable iterative solver can be applied to the adjoint equation (3.8) until the
stopping criterion (3.9) is satisfied. It is then easy to show that there exists ξ1 > 0
such that

(3.11) ‖ĝh
k −W ∗

k (Hks
n
k + lx(xh

k , λ
h
k))‖U∗h

≤ ξ1 min{‖ĝh
k‖U∗h

,∆k}.

Moreover, let Ĥk be an approximation to the reduced Hessian W ∗
kHkWk satisfying

(3.12) 〈su,k, Ĥksu,k〉 ≤ ξ2‖su,k‖2U

for all steps su,k ∈ Uh computed by the algorithm and some fixed ξ2 > 0. Then we
define our approximate reduced quadratic approximation of the Lagrangian as

m̂k(su) := qk(sn
k ) + 〈ĝh

k , su〉+ 1
2 〈su, Ĥksu〉,
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where sn
k denotes the quasi–normal step. And we compute su as an approximate

solution of the inexact reduced tangential problem

(3.13)
minsu∈Uh

m̂k(su)
s.t. ‖su‖U ≤ ∆k.

The approximate solution of (3.13) must provide a fraction of the Cauchy decrease in
the approximate model m̂k, i.e.

(3.14) m̂k(0)− m̂k(su,k) ≥ κ4‖ĝh
k‖U∗h

min
{
κ5‖ĝh

k‖U∗h
, κ6∆k

}
∀k ∈ N,

where κ4, κ5, κ6 are positive constants independent of k and the grid.
The y–component of the tangential step is then given by

(3.15) st
y,k = −(Ch

y )−1
k (Ch

u )ksu,k.

Since we allow linear system solutions to be inexact, solving this equation approxi-
mately creates the residual

(3.16) rt
k := (Ch

y )ks
t
y,k + (Ch

u )ksu,k.

Accuracy conditions on the residual in this tangential equation are presented in the
next section.

3.1.3. Derivation of the predicted decrease. To decide about the accep-
tance of the step we use the augmented Lagrangian merit function

Lh(xh
k , λ

h
k ; ρk) := f(xh

k) + 〈λh
k , C

h
k 〉+ ρk‖Ch

k ‖2V ∗
h

The decision about the acceptance of the step and update of the trust–region radius
∆k is then based on the ratio of actual reduction aredh(sk, ρk), given by

aredh(sk, ρk) := Lh(xh
k , λ

h
k ; ρk)− Lh(xh

k + sk, λ
h
k+1; ρk)

and predicted reduction based on the quadratic models in the quasi-normal and tan-
gential step

pred(sk; ρk) = Lh(xh
k , λ

h
k ; ρk)−

(
qk(sk) + 〈∆λh

k , (C
h
y )ksk + Ch

k 〉+ ρk‖(Ch
y )ksk + Ch

k ‖2V ∗
h

)
,

where ∆λk = λh
k+1−λh

k . Since we solve the linear system for the y–component of the
tangential step (3.15) inexactly with residual rt

k = (Ch
y )ks

t
y,k + (Ch

u )ksu,k, we obtain
for sk = sn

k + st
k, st

k = (st
y,k, su,k),

pred(sk; ρk) = Lh(xh
k , λ

h
k ; ρk)− qk(sk)−

〈
∆λh

k , C
h
k + (Ch

y )ks
n
y,k

〉
V,V ∗

−
〈
∆λk, r

t
k

〉
V,V ∗ − ρk

∥∥Ch
k + (Ch

y )ks
n
y,k + rt

k

∥∥2

V ∗
h

.

Since V is not necessarily a Hilbert space we use the triangle inequality in the last
summand reducing the predicted reduction

pred(sk; ρk) ≥ Lh(xh
k , λ

h
k ; ρk)− qk(sk)−

〈
∆λh

k , C
h
k + (Ch

y )ks
n
y,k

〉
V,V ∗ −

〈
∆λh

k , r
t
k

〉
V,V ∗

− ρk

(∥∥Ch
k + (Ch

y )ks
n
y,k

∥∥
V ∗

h

+
∥∥rt

k

∥∥
V ∗

h

)2

= Lh(xh
k , λ

h
k ; ρk)− qk(sk)−

〈
∆λh

k , C
h
k + (Ch

y )ks
n
y,k

〉
V,V ∗ −

〈
∆λh

k , r
t
k

〉
V,V ∗

− ρk

(∥∥Ch
k + (Ch

y )ks
n
y,k

∥∥2

V ∗
h

+ 2
∥∥Ch

k + (Ch
y )ks

n
y,k

∥∥
V ∗

h

∥∥rt
k

∥∥
V ∗

h

+
∥∥rt

k

∥∥2

V ∗
h

)
.
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Certainly the right hand side is not the same model of the actual reduction as before
(only if rt

k = 0). But since we reduced pred(sk; ρk) this will only lead to a stronger
requirement on the residual rt

k.
Note that

Lh(xh
k , λ

h
k ; ρk) = qk(0) + q̂k(0)− qk(sn

k ) + ρk‖Ch
k ‖2V ∗

h
.

Now, the quadratic model qk(sk) of the Lagrangian is replaced by the approximate
reduced quadratic model m̂k(su,k) and we define

predh(sn
k , su,k; ρk) := m̂k(0)− m̂k(su,k) + qk(0)− qk(sn

k )

−
〈
∆λh

k , C
h
k + (Ch

y )ks
n
y,k

〉
V,V ∗

+ ρk

(
‖Ch

k ‖2V ∗
h
− ‖Ch

k + (Ch
y )ks

n
y,k‖2V ∗

h

)
,

(3.17)

and

rpredh(rt
k; ρk) := −

〈
∆λh

k , r
t
k

〉
V,V ∗ − ρk‖rt

k‖2V ∗
h
− 2ρk‖rt

k‖V ∗
h
‖(Ch

y )ks
n
y,k + Ch

k ‖V ∗
h
.

We now view

predh(sn
k , su,k; ρk) + rpredh(rt

k; ρk)

as the (approximate) quadratic model of the actual reduction in the augmented La-
grangian.

Remark 3.2. If V is a Hilbert space, then we obtain

‖Ch
k + (Ch

x )ks
t
k‖2V =

(
Ch

k + (Ch
y )ks

n
y,k + rt

k, C
h
k + (Ch

y )ks
n
y,k + rt

k

)
V

= ‖Ch
k + (Ch

y )ks
n
y,k‖2V + ‖rt

k‖2V + 2
(
rt
k, C

h
k + (Ch

y )ks
n
y,k

)
V

and we can define rpredh(rt
k; ρk) more exactly as

rpredh(rt
k; ρk) := −

〈
∆λh

k , r
t
k

〉
V,V ∗ − ρk‖rt

k‖2V ∗
h
− 2

(
rt
k, C

h
k + (Ch

y )ks
n
y,k

)
V
,

which is larger than the above defined rpredh(rt
k; ρk).

Nevertheless, step evaluations are performed based on predh(sn
k , su,k; ρk) only: If

aredh(sk; ρk)
predh(sn

k , su,k; ρk)
≥ η1,

where η1 ∈ (0, 1) is a given constant, then sk is accepted, otherwise sk is rejected and
the trust–region is reduced. As in [18], the conditions

(3.18)
∣∣rpredh(rt

k; ρk)
∣∣ ≤ η0predh(sn

k , su,k; ρk),

where η0 ∈ (0, 1− η1) is a given constant, and

(3.19) ‖rt
k‖V ∗

h
≤ ξ3∆

1+p
k ,

for some constant ξ3 > 0 independent of k and given p ∈ (0, 1] ensure that the inex-
actness in the tangential step st

y,k does not dominate the quadratic model. Inequality
(3.18) is implied by

(3.20) ‖rt
k‖V ∗

h
≤ −σ +

√
σ2 + η0predh(sn

k , su,k; ρk)/ρk,

9



where σ = ‖(Ch
y )ks

n
y,k + Ch

k ‖V ∗
h

+ ‖∆λh
k‖V /(2ρk).

Remark 3.3. Since only the size of |rpredh(rt
k; ρk)| is of interest as seen in the

estimates (3.18) and (3.19), where this size depends on the residual accuracy of an
inexact solution of the tangential equation (3.15) the difference in the definitions of
rpredh(rt

k; ρk), whether V is a Hilbert space or not, is of no importance. However, the
acceptance of a trial–step depends on the ratio aredh/predh and, thus, rpredh(rt

k; ρk)
is of no importance for that decision.

3.1.4. Update of the penalty parameter. We choose the penalty parameter
ρk so large such that for a given κ ∈ (0, 1) the inequality

predh(sn
k , su,k; ρk) ≥ κ (m̂k(0)− m̂k(su,k))(3.21)

+
ρk

2

(
‖Ch

k ‖2V ∗
h
− ‖(Ch

y )ks
n
y,k + Ch

k ‖2V ∗
h

)
holds. Let 0 < ν � 1 and κ ∈ (0, 1). If (3.21) is satisfied with ρk = ρk−1, then we set
ρk := ρk−1. Otherwise, we choose the smallest ρk ≥ (1 + ν)ρk−1 that satisfies (3.21).

3.1.5. Update of the trust–region radius. Let 0 < α0 ≤ α1 < α2, let
0 < η1 < η2 < 1 and let 0 < ∆min ≤ ∆max. We choose the trust–region radius as
follows:

∆k+1 ∈


[α0∆k, α1∆k] , if aredh

predh
< η1

[max{∆min, α1∆k},max{∆min,∆k}] , if aredh

predh
∈ [η1, η2)

[max{∆min,∆k},min{max{∆min, α2∆k},∆max}] , if aredh

predh
≥ η2.

3.1.6. Refinement of the grids. The main idea for refinement is to control
the infinite dimensional norms of the residuals in the infinite dimensional optimality
system by using the corresponding finite dimensional norms and the (discrete) norm
of the reduced gradient and the constraint. Thus, if the norm of the reduced gradient
or the constraint is large enough compared to the infinite dimensional counterparts,
the current discretization will be good enough to compute sufficient descent. On the
other hand, if the discrete norm of the reduced gradient and/or the constraint on
the current grid are small compared to the continuous norms, one has to ensure by
mesh refinement that the infinite dimensional problem and, in particular, the infinite
dimensional reduced gradient are well represented in the current discretization such
that reasonable steps can be computed. Observe that the inexact reduced gradient ĝh

k

depends on the (inexact) state yh
k and the (inexact) adjoint λk +∆λk. Therefore, the

residual norms of the infinite dimensional state- and adjoint equation must be con-
trolled. Since these residual norms cannot be computed directly, we will use reliable
error estimators instead.

We will give brief motivations for the different refinement criteria before we state
implementable versions using error estimators. Note that for Galerkin discretizations
Vh is the test function space corresponding to the discrete state space Yh and therefore
a refinement of Yh implies a refinement of Vh and vice versa.

Error control for the discrete state equation. To control the accuracy of
the discrete state equation during optimization we refine the Y and V –grid adaptively
if necessary. As suggested above we require the following convergence condition on
the constraint

(3.22) ‖C(xh
k)‖V ∗ ≤ c1‖Ch

k ‖V ∗
h

+ c2‖ĝh
k‖U∗h

∀k ∈ N, xh
k ∈ Xh,
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with fixed arbitrary constants c1 > 1 and c2 > 0.
Remark 3.4. Note that this convergence condition for the constraint can only be

applied after the computation of the approximate reduced gradient (3.10) and, thus,
after the computation of the quasi–normal step. Since the discretized norms in Y ∗h and
V ∗h change due to refinement, condition (3.2) needs to be checked for the prolongated sn

k

after a refinement of the grids. Moreover, the dimension of Vh affects the computation
of the adjoint state and, thus, also the approximate reduced gradient. Consequently,
condition (3.11) has to be reviewed. Hence, if the prolongated sn

k does not meet (3.2),
then sn

k and ĝh
k are recomputed on the refined grids, since the computation of ĝh

k

depends also on sn
k . Otherwise, if the prolongated sn

k meets (3.2), then ĝh
k only needs

to be recomputed if (3.11) does not hold for the prolongated ĝh
k .

After the computation of a succesful step on the current grid we need to verify
that the next iterate is also well represented on the current grid. That is, the dif-
ference of the discrete norm and the infinite dimensional norm of the constraint in
the next iterate may not become much larger. Otherwise we may have no decrease
in the infinite dimensional augmented Lagrangian function while having decrease in
the discrete augmented Lagrangian function Lh. In the convergence proofs we will
see that it is enough to require that the descent in the tangential step dominates a
worsening in the infinite dimensional norm of the constraint:

aredh(sk; ρk) ≥ (1 + δ)ρk

((
‖C(xh

k + sk)‖2V ∗ − ‖Ch(k)(xh
k + sk)‖2V ∗

h(k)

)
−
(
‖C(xh

k)‖2V ∗ − ‖Ch(k)(xh
k)‖2V ∗

h(k)

))(3.23)

with 0 < δ � 1. If criterion (3.23) is not satisfied the Y - and V -grid need to be
refined properly such that the next iterate can be represented well. Thus, we check
after a succesful step if the current discretization was suitable to compute sufficient
descent. And, hence, this criterion guarantees suitable (adaptive) refinements. Note
that the norm differences in the right hand side of (3.23) are positive. Moreover, if
the grid is even better suitable for the next iterate than for the current iterate, then
the right hand side of (3.23) is negative.
Generally, if one refines reasonably, criterion (3.23) is always satisfied and, therefore,
does not need to be implemented.
However, in the case where the grids are refined infinitely many times and the maximal
meshsize h tends to zero (if the algorithm stays on one grid after some refinements
convergence follows from finite dimensional theory) condition (3.23) can be given in
the following way. Assuming that

α(xh
k) := ‖C(xh

k)‖2V ∗ − ‖Ch(k)(xh
k)‖2V ∗

h(k)
→ 0

α(xh
k + sk) := ‖C(xh

k + sk)‖2V ∗ − ‖Ch(k)(xh
k + sk)‖2V ∗

h(k)
→ 0

(3.24)

for h(k) ↘ 0 as k → ∞, condition (3.23) can be formulated in a weaker version,
which is easier to implement. If the last term on the right hand side in (3.23) can be
estimated by an estimator β(xh

k , sk) > 0 such that

(3.25) α(xh
k + sk)− α(xh

k) = K(h, k)β(xh
k , sk)

with unknown constants satisfying 1/K ≤ K(h, k) ≤ K, k ∈ N, for some fixed K > 0,
then it suffices to verify the following criterion

(3.26) aredh(sk; ρk) ≥ ξρkβ(xh
k , sk)ω

11



for fixed ω ∈ (0, 1) and ξ > 0. In fact, assumption (3.24) guarantees with (3.25)
and the uniform boundedness of K(h, k) from below and above that β(xh

k , sk) ≤
((1 + δ)K/ξ)−1/(1−ω) for k large enough which implies

(1+δ)(α(xh
k+sk)−α(xh

k)) = (1+δ)K(h, k)β(xh
k , sk) ≤ (1+δ)Kβ(xh

k , sk) ≤ ξβ(xh
k , sk)ω

and consequently (3.23). This way one does not need to know the constants K(h, k).
If the algorithm does not terminate after finitely many iterations and if the problem
is well conditioned in such a way that (3.24) holds, then after finitely many iterations
and refinements (3.26) implies (3.23) which suffices for the convergence proof.

An alternative criterion to (3.23) is the following condition

(3.27)
∞∑

k=0

‖C(xh(k+1)
k+1 )‖V ∗ − ‖Ch(k)(xh(k)

k+1 )‖V ∗
h(k)

<∞.

that originates from the jumps in the differences of the norms of the constraint due
to refinement of the meshes which shall be summable.
Nevertheless the convergence proof is given for criterion (3.23). A convergence proof
using condition (3.27) instead of (3.23) in the algorithm is very similar. Only a few
details in the proof of theorem 4.14 need to be adapted.

Error control for the reduced gradient and the discrete adjoint equa-
tion. To control the quality of the discrete adjoint equation and the discrete reduced
gradient during the optimization iteration we have to refine the U–grid and the Y –
and V –grid, respectively, if necessary. To control the error in the first optimality
condition Dyl(xh

k , λ
h
k) = 0, i.e. the adjoint equation, we apply a similar criterion as

for the state equation constraint. We use λh
k+1 = λh

k + ∆λh
k as inexact solution of the

discrete adjoint equation lhy (xh
k , λ

h
k+1) = 0 with ∆λh

k from (3.8) and (3.9). Note that
using the computation rule of ∆λh

k and Lemma 4.1 together with our assumptions on
the boundedness it is easy to show that

(3.28) ‖ly(xh
k , λ

h
k+1)‖Y ∗

h
≤ ξ3‖ĝh

k‖U∗h
+ ξ4‖Ch

k ‖V ∗
h

for some ξ3, ξ4 > 0. This justifies the choice of λh
k+1 as inexact discrete adjoint state

since ‖ĝh
k‖U∗h

and ‖Ch
k ‖V ∗

h
tend to zero during the optimization. Thus, we require the

following convergence condition on the adjoint equation

(3.29) ‖ly(xh
k , λ

h
k+1)‖Y ∗ ≤ c1‖ly(xh

k , λ
h
k+1)‖Y ∗

h
+ c2(‖ĝh

k‖U∗h
+ ‖Ch

k ‖V ∗
h
)

with fixed arbitrary constants c1 > 1 and c2 > 0.
For given Yh and Vh it is often easily possible to choose Uh ⊂ U in such a way

that

(3.30) ‖lu(xh
k , λ

h
k)‖U∗ = ‖lu(xh

k , λ
h
k)‖U∗h

.

In this case the refinement of Vh implies the refinement of Uh and there is no additional
criterion necessary for refining the control space.

Example 3.5. Consider again the problem (Problem 7.1 in section 7.1)

min
y∈H1

0 (Ω),u∈L2(Ω)
f(y, u) := 1

2‖y − yd‖2L2(Ω) + α
2 ‖u‖

2
L2(Ω)

s.t. −∆y + y3 = u in Ω,
y = 0 on ∂Ω,
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where Ω ⊂ R2 is a polygonal domain, α > 0. Then

〈lu(xh
k , λ

h
k), wu〉U∗,U = α(uh, wu)L2(Ω) − (λh, wu)L2(Ω) ∀wu ∈ U.

Therefore, if we choose Uh = Vh ⊂ V ⊂ U then αuh − λh ∈ Uh ⊂ U is the Riesz
representation of lu(xh

k , λ
h
k) in U as well as in Uh and therefore

‖lu(xh
k , λ

h
k)‖U∗ = ‖αuh − λh‖L2(Ω) = ‖lu(xh

k , λ
h
k)‖U∗h

.

On the other hand, if (3.30) does not hold then we require that the discretization
of the control space meets the following accuracy condition

(3.31) ‖lu(xh
k , λ

h
k+1)‖U∗ ≤ c1‖lu(xh

k , λ
h
k+1)‖U∗h

+ c2(‖ĝh
k‖U∗h

+ ‖Ch
k ‖V ∗

h
),

with fixed arbitrary constants c1 > 1 and c2 > 0. Note that using Lemma 4.1 together
with our assumptions on the boundedness it is easy to show that

(3.32) ‖lu(xh
k , λ

h
k+1)‖U∗h

≤ ξ5‖ĝh
k‖U∗h

+ ξ6‖Ch
k ‖V ∗

h

for some ξ5, ξ6 > 0.
Remark 3.6. Note that after a refinement of the Y – and V –grid for the adjoint

the discretized norms in Y ∗h and V ∗h change. Thus, condition (3.2) is not necessarily
satisfied for the prolongated sn

k that was computed on a coarser grid. Hence, possi-
bly, the quasi–normal step needs to be recomputed. In any case, the inexact reduced
gradient ĝh

k is recomputed.

Implementation of the refinement criteria with error estimators. As de-
rived above we need to implement the following refinement criteria with fixed arbitrary
constants ci > 1, ki > 0, i = 1, 2, 3:

‖C(xh
k)‖V ∗ ≤ c1‖Ch(k)

k ‖V ∗
h(k)

+ k1‖ĝh(k)
k ‖U∗

h(k)

‖ly(xh
k , λ

h
k+1)‖Y ∗ ≤ c2‖ly(xh

k , λ
h
k+1)‖Y ∗

h(k)
+ k2

(
‖Ch(k)

k ‖V ∗
h(k)

+ ‖ĝh(k)
k ‖U∗

h(k)

)
‖lu(xh

k , λ
h
k+1)‖U∗ ≤ c3‖lu(xh

k , λ
h
k+1)‖U∗

h(k)
+ k3

(
‖Ch(k)

k ‖V ∗
h(k)

+ ‖ĝh(k)
k ‖U∗

h(k)

)
In general, infinite dimensional norms can not be computed. Therefore, we assume
that we have reliable error estimators ηC,h, ηly,h, ηlu,h with

‖C(yh, uh)‖V ∗ ≤ C1 ηC,h(yh, uh) + C2 ‖Ch(yh, uh)‖V ∗
h

(3.33a)

‖ly(yh, uh, λh)‖Y ∗ ≤ C3 ηly,h(yh, uh, λh) + C4 ‖ly(yh, uh, λh)‖Y ∗
h

(3.33b)

‖lu(yh, uh, λh)‖U∗ ≤ C5 ηlu,h(yh, uh, λh) + C6 ‖lu(yh, uh, λh)‖U∗h
(3.33c)

with unknown, bounded constants Ci > 0, i = 1, . . . , 6, in such a way that ηh → 0 as
h → 0 for fixed yh, uh, λh. Such error estimators can be developed using the same
techniques as for well known error estimators in the presence of exact discrete states.
Examples for suitable residual based and averaging error estimators as well as their
derivation will be shown in section 7.

Remark 3.7. For all error estimators in section 7 one can show that ηh → 0
as h → 0, i.e. if the maximal mesh size tends to zero. Therefore, the convergence
conditions (3.34) can always be satisfied by sufficient refinement.
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Now we insert these error estimator inequalities (3.33) in the above given criteria.
Moreover, an algorithm will truncate for a given stop-tolerance εtol > 0. Since the
norms of the reduced gradient and the constraint may become much smaller than the
prescribed stop-tolerance in one (last) iteration we also include εtol in the refinement
formulas. Thus, we obtain the following implementable sufficient refinement criteria:

Check for arbitrary fixed constants c̃i > 0, i = 1, . . . , 9, if

ηC,h(k)(xh
k) ≤ max

{
c̃1‖Ch(k)

k ‖V ∗
h(k)

+ c̃2‖ĝh(k)
k ‖U∗

h(k)
, c̃3 εtol

}
(3.34a)

ηly,h(k)(xh
k , λ

h
k+1) ≤max

{
c̃4‖ly(xh

k , λ
h
k+1)‖Y ∗

h(k)

+ c̃5
(
‖Ch(k)

k ‖V ∗
h(k)

+ ‖ĝh(k)
k ‖U∗

h(k)

)
, c̃6 εtol

}(3.34b)

ηlu,h(k)(xh
k , λ

h
k+1) ≤max

{
c̃7‖lu(xh

k , λ
h
k+1)‖U∗

h(k)

+ c̃8
(
‖Ch(k)

k ‖V ∗
h(k)

+ ‖ĝh(k)
k ‖U∗

h(k)

)
, c̃9 εtol

}(3.34c)

Otherwise refine the grids for Yh(k), Vh(k), Uh(k), prolongate the functions and recom-
pute the affected data.

Remark 3.8. With the choice of c̃3, c̃6, c̃9 a different quality for the state and
the adjoint state than for the norms of the reduced gradient and the constraint can
be achieved in the stop-criterion of the algorithm. This is in particular of interest
when dependent on PDEs or domains an approximate size of the error estimators on
fine meshes (larger than εtol) is known. Note that c̃1 and c̃2 affect directly how soon
meshes are refined.

Criterion (3.23) can be implemented in the form of (3.26) the following way. We
assume that we have an error estimator as in (3.33a)

‖C(yh, uh)‖V ∗ ≤ C1 ηC,h + C2 ‖Ch(yh, uh)‖V ∗
h

with C2 = C2(h) → 1 as h↘ 0 where ηC,h is an efficient and reliable error estimator
in the presence of exact discrete states. Then C1ηC,h(C1ηC,h +2‖Ch(yh, uh)‖V ∗

h
) may

be seen as good numerical approximation of

‖C(xh
k)‖2V ∗ − ‖Ch(xh

k)‖2V ∗
h

for some bounded constant C1. Therefore, we can consider

‖C(xh
k)‖2V ∗ − ‖Ch(xh

k)‖2V ∗
h(k)

= K(h, k)ηC,h(xh
k)
(
C1ηC,h(xh

k) + 2‖Ch(xh
k)‖V ∗

h(k)

)
‖C(xh

k+1)‖2V ∗ − ‖Ch(xh
k+1)‖2V ∗

h(k)
= K(h, k)ηC,h(xh

k+1)
(
C1ηC,h(xh

k+1)

+ 2‖Ch(xh
k+1)‖V ∗

h(k)

)
as residual estimator in the norm differences of the constraint with bounded constants
1/K ≤ K(h, k) ≤ K for some K > 0. Then β(xh

k , sk) in (3.25) can be computed as

β(xh
k , sk) =ηC,h(xh

k+1)(C1ηC,h(xh
k+1) + 2‖Ch(xh

k+1)‖V ∗
h(k)

)

− ηC,h(xh
k)(C1ηC,h(xh

k) + 2‖Ch(xh
k)‖V ∗

h(k)
)

(3.35)

with appropriate choice of C1. Thus, condition (3.26) is implementable in a heuristical
version.
Note that using a residual based or averaging error estimator ηC,h condition (3.26)
with β(xh

k , sk) as in (3.35) still contains the important geometrical meaning that the
current grid must be good enough to compute and represent the next iterate.
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Local refinement strategy. The local refinement strategy is based on elemen-
twise contributions to the error estimators

ηC,h(·) =

(∑
T∈Th

η2
C,h,T (·)

)1/2

ηly,h(·) =

(∑
T∈Th

η2
ly,h,T (·)

)1/2

.

Examples for suitable error estimators will be discussed in section 6. There exist
many local refinement strategies to select elements for refinement. Typical examples
for refinement strategies are refining the p% elements with largest local errors ηC,h,T (·)
or ηly,h,T (·) respectively, or refining where the local contribution to the error estimator
is larger than p% of the largest local error.

3.2. Multilevel trust–region composite–step SQP algorithm. In this sec-
tion we state the common assumptions which are necessary for the convergence theory
and our multilevel algorithm.

3.2.1. Assumptions. Our convergence theory requires the set of assumptions
given below. For all iterations k we assume that xh

k , xh
k +sk ∈ D, where D is an open,

convex subset of X.
A.1. The functionals f , C are twice continuously Fréchet differentiable in D.
A.2. The partial Jacobians (Ch

y )k and Cy(xh) have an inverse for all xh ∈ D.
A.3. The functionals and operators f , fx, fxx, C, (Ch

x ), Ch
xx are bounded in D.

The operators (Ch
y )−1

k are uniformly bounded in D.
A.4. The sequences {Hk}, {Wk} and {λh

k} are bounded.
We will use the notation BA in the convergence theory as a bound for the norm ‖A‖
for any quantity A that is bounded by the assumptions.

3.2.2. Multilevel trust–region composite–step SQP algorithm. We are
now in the position to state the complete algorithm.

Algorithm 3.9 (Multilevel trust–region composite–step SQP algorithm).

S.0. Initialization: Choose κ ∈ (0, 1), 0 < ν � 1, p ∈ (0, 1], ρ−1 ≥ 1, εtol > 0,
0 < α0 ≤ α1 < 1 < α2, 0 < η1 < η2 < 1, 0 < ∆min ≤ ∆max, 0 < η0 < 1− η1,
c̃1 ≥ 1, c̃2, c̃3 > 0, a starting grid denoted by index h, xh

0 ∈ Xh, λh
0 ∈ Vh and

∆0 ∈ [∆min,∆max].
For k = 0, 1, 2, ...

S.1. Compute a quasi–normal step sn
k as inexact solution of (3.1) satisfying (3.2).

S.2. Compute an inexact adjoint state λk+1λk +∆λk by (3.8) satisfying (3.9) and
the inexact reduced gradient ĝh

k by (3.10).
S.3. If the refinement conditions (3.34b) and (3.34c) for the adjoint equation and

the control-gradient hold then goto S.4.. Otherwise refine the U–grid and the
Y – and V –grid (adaptively) and, if (3.2) is satisfied for the prolongated sn

k ,
then go to S.2., otherwise go to S.1..

S.4. If the refinement condition (3.34a) for the state equation holds, then go to
S.5.. Otherwise refine the Y – and V –grid (adaptively) until (3.34a) is satis-
fied. If (3.2) and (3.11) hold for the prolongated sn

k and ĝh
k , then go to S.5..

If (3.11) is not satisfied for the prolongated ĝh
k , then go to S.2.. But if (3.2)

is also not satisfied for the prolongated sn
k , then go to S.1..
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S.5. If ‖Ch
k ‖V ∗

h
≤ εtol and ‖ĝh

k‖U∗h
≤ εtol, then stop and return xh

k = (yh
k , u

h
k) as

an approximate solution for problem (1.1).
S.6. Compute su,k as inexact soulution of (3.13) satisfying (3.14).
S.7. Update the penalty parameter according to subsection 3.1.4.
S.8. Compute st

y,k such that the residual rt
k satisfies (3.18) and (3.19).

S.9. Compute predh(sn
k , su,k; ρk) using (3.17). Update the trust–region radius ac-

cording to subsection 3.1.5.
If aredh(sk; ρk)/predh(sn

k , su,k; ρk) < η1, then reject sk and go back to S.1.
with xh

k and λh
k , else go to S.10..

S.10. If (3.23) is satisfied, then accept sk and go to S.1. with xh
k+1 = xh

k + sk and
λh

k+1 = λh
k+1. Otherwise reject sk, refine the Y – and V –grid properly and go

back to S.1. with xh
k and λh

k .
Remark 3.10.

1. For the convergence theory we need the Lagrange multipliers to be bounded.
As stated in the algorithm above we use the adjoint states λk as Lagrange
multipliers in the Lagrangian function l. If the sequence of adjoint states is
not bounded one can distinct between adjoint states and (different) bounded
Lagrange multipliers.

2. Generally, if one refines reasonably, criterion (3.23) is always satisfied and,
therefore, S.10. does not need to be implemented.

4. Convergence Analysis. Let assumptions A.1–A.4 hold throughout the sec-
tion.

4.1. Auxiliary estimates. We start with several technical lemmas.
Lemma 4.1. There exists κ3 > 0 such that for all steps sn

k generated by the
algorithm the inequality

‖sn
k‖X ≤ κ3‖Ch

k ‖V ∗
h

holds.
Proof. This is an immediate consequence of ‖(Ch

y )ks
n
y,k + Ch

k ‖V ∗
h
≤ ‖Ch

k ‖V ∗
h

and
the boundedness of (Ch

y )−1
k .

Lemma 4.2. There exists B∆ > 0 such that for all steps sk generated by the
algorithm the inequality ‖sk‖ ≤ B∆∆k holds.

Proof. Using ‖sn
k‖Y ≤ ∆k, ‖su,k‖U ≤ ∆k, and ∆k ≤ ∆max together with the

definiton (3.16) of rt
k, (3.19) and the boundedness of (Ch

y )−1
k (Ch

u )k, we obtain the
desired result.

Lemma 4.3. There exists c > 0 independent of the grid such that∣∣−l(xh
k+1, λ

h
k) + qk(sk)

∣∣ ≤ c∆2
k.

Proof. By the definition (3.3) of qk a Taylor expansion of l(xh
k+1, λ

h
k) and Lemma

4.2 yields the desired result.
Lemma 4.4. There exists c > 0 independent of the grid such that

|−qk(sk) + q̂k(su,k)| ≤ c∆1+p
k .

for qk and q̂k in (3.3), (3.6).
16



Proof. Recall that, by the definition (3.16) of rt
k,

st
k =

(
(Ch

y )−1
k rt

k

0

)
+Wksu,k.

Using the definitions of qk and q̂k in (3.3), (3.6) along with the above equality, we
find that

− qk(sk) + q̂k(su,k) =

= 〈Hks
n
k + lx(xh

k , λ
h
k),Wksu,k〉 − 〈lx(xh

k , λ
h
k), st

k〉
− 〈sn

k ,Hks
t
k〉 − 1

2 〈s
t
k,Hks

t
k〉+ 1

2 〈Wksu,k,HkWksu,k〉
= 〈Hks

n
k + lx(xh

k , λ
h
k),Wksu,k − st

k〉
− 1

2 〈s
t
k,Hks

t
k〉+ 1

2 〈Wksu,k,HkWksu,k〉
≤ (BH‖sn

k‖X +B∇l)‖Wksu,k − st
k‖X + 1

2BH‖st
k‖2X + 1

2BHB
2
W ‖su,k‖2X .

Note that

‖st
k‖X ≤ ‖st

k −Wksu,k‖X + ‖Wksu,k‖X

≤ ‖(Ch
y )−1

k ‖L(V ∗
h ,Yh)‖rt

k‖V ∗
h

+BW ‖su,k‖U

≤ BC−1
y
ξ3∆

1+p
k +BW ‖su,k‖U ,

where we have used (3.19). Hence, we obtain by using ∆k ≤ ∆max

|−qk(sk) + q̂k(su,k)| ≤
≤ (BH‖sn

k‖X +B∇l)‖(Ch
y )−1

k rt
k‖X + 1

2BH‖st
k‖2X + 1

2BHB
2
W ‖su,k‖2U

≤ (BH‖sn
k‖X +B∇l)BC−1

y
ξ3∆

1+p
k + 1

2BH

(
BC−1

y
ξ3∆

1+p
k +BW ‖su,k‖U

)2

+ 1
2BHB

2
W ‖su,k‖2U

≤ C∆1+p
k

with some constant C. the proof is complete.
Lemma 4.5. There exists c > 0 independent of the grid such that∣∣∣〈ĝh

k −W ∗
k (qk)s(sn

k ), su,k〉+ 1
2 〈su,k, Ĥksu,k〉 − 1

2 〈su,k,W
∗
kHkWksu,k〉

∣∣∣ ≤ c∆1+p
k .

Proof. This is an immediate consequence of (3.11), (3.12), ∆k ≤ ∆max and the
assumptions on the boundedness.

Lemma 4.6. There exists c > 0 independent of the grid such that∣∣〈∆λh
k ,−Ch

k+1 + (Ch
x )ksk + Ch

k 〉
∣∣ ≤ c∆2

k.

Proof. A Taylor expansion for the constraint together with the boundedness of
the Lagrange multipliers yield the desired result.

Remark 4.7. For any norm ‖ · ‖ on a vectorspace Z and a, b, c ∈ Z the following
inequality holds∣∣∣‖a‖2 − (‖b‖+ ‖c‖)2

∣∣∣ = ∣∣∣‖a‖ − ‖b‖ − ‖c‖∣∣∣ · ∣∣∣‖a‖+ ‖b‖+ ‖c‖
∣∣∣

≤
(
‖a− b‖+ ‖c‖

)(
‖a‖+ ‖b‖+ ‖c‖

)
.
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Lemma 4.8. There exist c1, c2 > 0 independent of the grid such that∣∣∣ρk

(
‖Ch

k+1‖2V ∗
h
−
(
‖Ch

k + (Ch
y )ks

n
y,k‖V ∗

h
+ ‖rt

k‖V ∗
h

)2)∣∣∣ ≤
≤ ρkc1∆

1+p
k ‖Ch

k ‖V ∗
h

+ ρkc2∆
2+p
k .

Proof. In view of Remark 4.7 we estimate as follows∣∣∣‖Ch
k+1‖2V ∗

h
−
(
‖Ch

k + (Ch
y )ks

n
y,k‖V ∗

h
+ ‖rt

k‖V ∗
h

)2∣∣∣ ≤
≤
[
‖Ch

k+1 − Ch
k − (Ch

y )ks
n
y,k‖V ∗

h
+ ‖rt

k‖V ∗
h

]
·
[
‖Ch

k+1‖V ∗
h

+ ‖Ch
k + (Ch

y )ks
n
y,k‖V ∗

h
+ ‖rt

k‖V ∗
h

]
=: [A] · [B].

First, we estimate [A] by using Taylor expansion, t ∈ [0, 1], and (3.19). This yields
with ∆k ≤ ∆max

[A] = ‖Ch
k + (Ch

x )ksk + 1
2C

h
xx(xh

k + tsk)[sk, sk]− Ch
k − (Ch

y )ks
n
y,k‖V ∗

h
+ ‖rt

k‖V ∗
h

≤ ‖(Ch
x )ksk − (Ch

y )ks
n
y,k‖V ∗

h
+ 1

2BD2C‖sk‖2X + ‖rt
k‖V ∗

h

= ‖(Ch
x )ks

t
k‖V ∗

h
+ 1

2BD2C‖sk‖2X + ‖rt
k‖V ∗

h

= ‖rt
k‖V ∗

h
+ 1

2BD2C‖sk‖2X + ‖rt
k‖V ∗

h

≤ C∆1+p
k ,

for some C > 0. Now, we estimate [B]

‖Ch
k + (Ch

y )ks
n
y,k‖V ∗

h
≤ ‖Ch

k ‖V ∗
h

+BCy‖sn
y,k‖Y ≤ ‖Ch

k ‖V ∗
h

+ c∆k,

for some c > 0 and by using Lemma 4.2

‖Ch
k+1‖V ∗

h
= ‖Ch

k + Ch
x (xh

k + τsk)sk‖V ∗
h

≤ ‖Ch
k ‖V ∗

h
+BCx‖sk‖X ≤ ‖Ch

k ‖V ∗
h

+BCxB∆∆k,

for some τ ∈ [0, 1]. Thus, we obtain [B] ≤ ‖Ch
k ‖V ∗

h
+ c∆k for some c > 0. The

estimates on [A] and [B] together imply

[A] · [B] ≤ c1∆
1+p
k ‖Ch

k ‖V ∗
h

+ c2∆
2+p
k ,

for some c1, c2 > 0, which yields the desired result.
Lemma 4.9. There exist K0,K1,K2 > 0 independent of the grid such that

(4.1)
|aredh(sk; ρk)− predh(sn

k , su,k; ρk)− rpredh(rt
k; ρk)|

≤ K0∆
1+p
k + ρkK1∆

1+p
k ‖Ch

k ‖V ∗
h

+ ρkK2∆
2+p
k .

18



Proof. Using the definitions of aredh, predh, rpredh, qk, q̂k and m̂k and some
simple transformations we obtain

|aredh(sk; ρk)− predh(sn
k , su,k; ρk)− rpredh(rt

k; ρk)| =

=
∣∣∣−l(xh

k+1, λ
h
k) + qk(sk)− qk(sk) + q̂k(su,k)

+ 〈ĝh
k −W ∗

k (qk)s(sn
k ), su,k〉

+ 1
2 〈su,k, Ĥksu,k〉 − 1

2 〈su,k,W
∗
kHkWksu,k〉

+ 〈∆λh
k ,−Ch

k+1 + (Ch
x )ksk + Ch

k 〉

− ρk

(
‖Ch

k+1‖2V ∗
h
−
(
‖Ch

k + (Ch
y )ks

n
y,k‖V ∗

h
+ ‖rt

k‖V ∗
h

)2)∣∣∣
(4.2)

The asserted estimate follows now from the triangle inequality together with Lemmas
4.3, 4.4, 4.5, 4.6, 4.8 and ∆k ≤ ∆max.

4.2. Acceptance of steps. We show now that there will always be a succesful
step on a fixed grid after finitely many iterations. Together with Remark 3.7, which
states that the refinement conditions (3.34) can always be satisfied by sufficient re-
finement, this shows that the algorithm is well defined. We start with an auxiliary
lemma.

Lemma 4.10. Let ∆k ≤ min
{
δ, (δ‖Ch

k ‖V ∗
h
)

2
2+p

}
with 0 < δ < min{B−1

C , 1}.
Then the following inequalities hold:

(i) ‖Ch
k ‖V ∗

h
∆1+p

k ≤ ‖Ch
k ‖V ∗

h
δp min{∆k, ‖Ch

k ‖V ∗
h
},

(ii) ∆2+p
k ≤ δ‖Ch

k ‖V ∗
h

min{∆k, ‖Ch
k ‖V ∗

h
}.

Proof. These estimates follow quite directly from the assumptions.
Lemma 4.11. Let ε > 0, then there exists a constant δ > 0 which depends on ε

but not on ‖Ch
k ‖V ∗

h
such that if

‖Ch
k ‖V ∗

h
+ ‖ĝh

k‖U∗h
≥ ε,

then

aredh(sk; ρk)
predh(sn

k , su,k; ρk)
≥ η1

for ∆k ≤ min
{
δ,max

{(
δ‖Ch

k ‖V ∗
h

) 2
2+p ,

(
δ
ρk

) 1
p

}}
, in particular, the step sk will be

accepted and ∆k+1 ≥ ∆k.
Proof. Using the triangle inequality and (3.18) we see that∣∣∣∣ aredh(sk; ρk)

predh(sn
k , su,k; ρk)

− 1
∣∣∣∣ ≤ |aredh(sk; ρk)− predh(sn

k , su,k; ρk)− rpredh(rt
k; ρk)|

predh(sn
k , su,k; ρk)

+ η0.

By the choice of the penalty parameter and by the decrease conditions (3.14) and
(3.2), we obtain

predh(sn
k , su,k; ρk) ≥ κκ4‖ĝh

k‖U∗h
min

{
κ5‖ĝh

k‖U∗h
, κ6∆k

}
+ ρk

2 κ1‖Ch
k ‖V ∗

h
min

{
κ2‖Ch

k ‖V ∗
h
,∆k

}
.

Then there exists K̃ > 0 (depending on ρ0) such that

predh(sn
k , su,k; ρk) ≥ K̃εmin{ε,∆k}+ K̃ρk‖Ch

k ‖V ∗
h

min
{
‖Ch

k ‖V ∗
h
,∆k

}
.
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For the right hand side of inequality (4.1) from Lemma 4.9 we obtain

K0∆
1+p
k + ρkK1∆

1+p
k ‖Ch

k ‖V ∗
h

+ ρkK2∆
2+p
k ≤ ∆1+p

k ρkc,

for some c ≥ 1. Now choose δ1 < min{(1−η1−η0)K̃ε, ε} and let ∆k ≤ min
{(

δ1
ρkc

) 1
p

, δ1

}
.

Then we obtain by using Lemma 4.9 and the previous inequalities∣∣∣∣ aredh(sk; ρk)
predh(sn

k , su,k; ρk)
− 1
∣∣∣∣ ≤ ∆1+p

k ρkc

K̃ε∆k

+ η0 ≤ 1− η1.

Thus, the above chosen ∆k guarantees a succesful step.
Now we consider the second part of the maximum in the lemma. Choose δ2 <

min
{(

(1−η1−η0)

K̂

) 1
p

, B−1
C , 1

}
with K̂ = max{K0,2K1,2K2}

min{ eK, eKε}
and let BC be the bound

on the norm of the constraint. Let ∆k ≤ min
{(
δ2‖Ch

k ‖V ∗
h

) p
2+p , δ2

}
, then we obtain

by using Lemma 4.10 with δ = δ2∣∣∣∣ aredh(sk; ρk)
predh(sn

k , su,k; ρk)
− 1
∣∣∣∣ ≤

≤ η0 +
K0∆

1+p
k + ρk

(
K1∆

1+p
k ‖Ch

k ‖V ∗
h

+K2∆
2+p
k

)
K̃ε∆k + K̃ρk‖Ch

k ‖V ∗
h

min{∆k, ‖Ch
k ‖V ∗

h
}

≤ η0 +
K0∆kδ

p
2 + ρk max{K1,K2}(δ2 + δp

2)‖Ch
k ‖V ∗

h
min{∆k, ‖Ch

k ‖V ∗
h
}

K̃ε∆k + K̃ρk‖Ch
k ‖V ∗

h
min{∆k, ‖Ch

k ‖V ∗
h
}

≤ η0 + δp
2K̂

(
∆k + ρk‖Ch

k ‖V ∗
h

min{∆k, ‖Ch
k ‖V ∗

h
}

∆k + ρk‖Ch
k ‖V ∗

h
min{∆k, ‖Ch

k ‖V ∗
h
}

)

≤ η0 + K̂
1− η1 − η0

K̂
= 1− η1.

Thus, the step will be accepted. Now, we define δ := min{δ2, δ1/c} and the proof is
complete.

4.3. Penalty parameter. We study next the behaviour of the penalty param-
eter.

Lemma 4.12. Under the problem assumptions, there exists a constant K > 0
independent of the iterates such that

qk(0)− qk(sn
k )− 〈∆λh

k , (C
h
y )ks

n
y,k + Ch

k 〉 ≥ −K‖Ch
k ‖V ∗

h
.

Proof. This result follows similarly as in [13, Lem. 7.3].
Lemma 4.13. Let ε > 0 and assume that

‖Ch
k ‖V ∗

h
+ ‖ĝh

k‖U∗h
≥ ε ∀k ∈ N.

Then there exists ρ∗ > 0 and K ∈ N such that ρk = ρ∗ for all k ≥ K.
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Proof. Otherwise, we obtain ρk → ∞. Set M := {k ∈ N : ρk > ρk−1} and
consider k ∈M. Then (3.21) is not valid. This implies

(4.3)

qk(0)− qk(sn
k )− 〈∆λh

k , (C
h
y )ks

n
y,k + Ch

k 〉
≤ (κ− 1)

(
m̂k(0)− m̂k(su,k)

)
−ρk−1

2

(
‖Ch

k ‖2V ∗
h
− ‖(Ch

y )ks
n
y,k + Ch

k ‖2V ∗
h

)
≤ 0.

By Lemma 4.12, the left hand side of the above inequality is ≥ −K‖Ch
k ‖V ∗

h
. Thus,

(4.3) and (3.2) imply

−K‖Ch
k ‖V ∗

h
≤ −ρk−1

2 κ1‖Ch
k ‖V ∗

h
min{κ2‖Ch

k ‖V ∗
h
,∆k}.

If ‖Ch
k ‖V ∗

h
= 0, then min{‖Ch

k ‖V ∗
h
,∆k} = 0. Otherwise the previous inequality yields

a constant Cρ > 0 such that

Cρ ≥ ρk−1 min{‖Ch
k ‖V ∗

h
,∆k}.

Since ρk →∞, this shows min{‖Ch
k ‖V ∗

h
,∆k}k∈M → 0. On the other hand, by Lemma

4.11 and the update rule for the trust–region radius, we obtain

(4.4) ∆k ≥ α0 min
{
δ,max

{(
δ‖Ch

k ‖V ∗
h

) 2
2+p ,

(
δ
ρk

) 1
p

}}
.

This yields {‖Ch
k ‖V ∗

h
}k∈M → 0. Consequently, for all k ∈ M large enough, we get

‖ĝh
k‖U∗h

≥ ε
2 . If (3.21) does not hold, then by (4.3) and (3.14) we obtain

−K‖Ch
k ‖V ∗

h
≤ −(1− κ)κ4‖ĝh

k‖U∗h
min{κ5‖ĝh

k‖U∗h
, κ4∆

p
k}.

Consequently, there exists c > 0 such that c‖Ch
k ‖V ∗

h
≥ ε

2 min
{

ε
2 ,∆

p
k

}
.

Since {‖Ch
k ‖V ∗

h
}k∈M → 0, this requires

∆p
k ≤

2c
ε ‖C

h
k ‖V ∗

h
∀k ∈M, k ≥ k0 ∈ N.

Hence, by (4.4), we obtain

(
2c
ε

) 1
p ‖Ch

k ‖
1
p

V ∗
h
≥ ∆k ≥ α0 min

{
δ,max

{(
δ‖Ch

k ‖V ∗
h

) 2
2+p ,

(
δ
ρk

) 1
p

}}
.

If ‖Ch
k ‖V ∗

h
= 0, this leads to the contradiction 0 ≥ min{δ, (δ/ρk)

1
p } > 0. Thus,

‖Ch
k ‖V ∗

h
> 0 holds, implying

(
2c
ε

) 1
p

‖Ch
k ‖

1
p

V ∗
h
≥ α0 min

{
δ, δ

2
2+p ‖Ch

k ‖
2

2+p

V ∗
h

}
,

which contradicts {‖Ch
k ‖V ∗

h
}k∈M → 0. Consequently, the sequence of penalty param-

eters {ρk} is bounded. Moreover, the update rule for the penalty parameter implies
that there exists ρ∗ > 0 and K ∈ N such that ρk = ρ∗ for all k ≥ K.
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4.4. Global convergence result. We show now global convergence to a sta-
tionary point of the infinite dimensional problem (1.1) if εtol = 0 or finite termination
if εtol > 0 respectively. We start with the following result.

Theorem 4.14. Let the assumptions A.1., A.2., A.3. and A.4. hold. If εtol = 0
then the algorithm terminates finitely or the sequence of iterates generated by algorithm
3.9 satisfies

lim inf
k→∞

(
‖Ch

k ‖V ∗
h

+ ‖ĝh
k‖U∗h

)
= 0.

For εtol > 0 the algorithm terminates finitely with‖Ch
k ‖V ∗

h
≤ εtol and ‖ĝh

k‖U∗h
≤ εtol.

Proof. Suppose not, then the algortihm runs infinitely and there exists ε > 0 such
that

‖Ch
k ‖V ∗

h
+ ‖ĝh

k‖U∗h
≥ ε ∀k ∈ N.

Then, by Lemma 4.13, ρk equals ρ∗ for all k ≥ K for some K ∈ N. Let S be the
set of indices of accepted steps. By Lemma 4.11, there exists δ > 0 such that for all
accepted steps, k ∈ S, we obtain

∆k ≥ α0 min
{
δ,max

{(
δ‖Ch

k ‖V ∗
h

) 2
2+p ,

(
δ
ρ∗

) 1
p

}}
≥ α0 min

{
δ,
(

δ
ρ∗

) 1
p

}
=: ∆∗.

(4.5)

Moreover, for all k ∈ S with k ≥ K we get by the decrease conditions (3.14) and (3.2)

aredh(sk; ρk) ≥ η1predh(sn
k , su,k; ρ∗)

≥ η1κκ4‖ĝh
k‖U∗h

min{κ5‖ĝh
k‖U∗h

, κ6∆∗}

+ η1
ρ∗

2 κ1‖Ch
k ‖V ∗

h
min{κ2‖Ch

k ‖V ∗
h
,∆∗}.

(4.6)

Let us define the infinite dimensional augmented Lagrangian function L and the infi-
nite dimensional actual reduction ared∞ by

L(x, λ; ρ) := l(x, λ) + ρ‖C(x)‖2V ∗ ,

ared∞(sk; ρk) := L(xh
k , λ

h
k ; ρk)− L(xh

k + sk, λ
h
k+1; ρk) .

The condition (3.23) for reasonable refinement yields

aredh(sk; ρk) = δ
1+δ aredh(sk; ρk) + 1

1+δ aredh(sk; ρk)

≥ δ
1+δ aredh(sk; ρk) + ρk

((
‖C(xh

k+1)‖2V ∗ − ‖Ch(k)(xh
k+1)‖2V ∗

h(k)

)
−
(
‖C(xh

k)‖2V ∗ − ‖Ch(k)(xh
k)‖2V ∗

h(k)

))
.

Hence, using this inequality we obtain

(4.7) ared∞(sk; ρk) ≥ δ
1+δ aredh(sk; ρk) ≥ δ

1+δη1predh(sn
k , su,k; ρk)

since we assume conform discretizations and, thus, lh(xh
k , λ

h
k) = l(xh

k , λ
h
k) holds. Now,

by assumption, L is bounded from below. Summation of the infinite dimensional
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actual reduction in the successive steps k ∈ S gives∑
k∈S

ared∞(sk; ρk) =
∑
k∈S

(L(xh
k , λ

h
k ; ρk)− L(xh

k+1, λ
h
k+1; ρk))

= C +
∑

S3k≥K

(L(xh
k , λ

h
k ; ρ∗)− L(xh

k+1, λ
h
k+1; ρ

∗))

= C + L(xh
K , λ

h
K ; ρ∗)− lim

k→∞
L(xh

k+1, λ
h
k+1; ρ

∗) <∞.

Hence, by the summability, we obtain ared∞(sk; ρk) → 0 as S 3 k → ∞ which
implies, by (4.5), (4.6), and (4.7) that ‖Ch

k ‖V ∗
h

+ ‖ĝh
k‖U∗h

→ 0. This contradicts our
assumption from the beginning of the proof.

The following theorem states that there exists a subsequence of the iterates that
satisfies the first–order necessary optimality conditions (cf. (2.2)) of the given problem
(1.1) in the limit if εtol = 0.

Theorem 4.15. Let the assumptions A.1., A.2., A.3. and A.4. hold. Then for
εtol > 0 the algorithm terminates finitely and for εtol = 0 the algorithm terminates
finitely with a stationary point of problem (1.1) or the sequence of iterates (xh

k , λ
h
k+1)

generated by algorithm 3.9 satisfies

lim inf
k→∞

(∥∥ly(xh
k , λ

h
k+1)

∥∥
Y ∗ +

∥∥lu(xh
k , λ

h
k+1)

∥∥
U∗

+
∥∥C(xh

k)
∥∥

V ∗

)
= 0.

Proof. Using the convergence conditions (3.34) with εtol = 0 together with (3.28)
for the adjoint equation and (3.32) for the u–gradient of the Lagrangian this is an
immediate result of Theorem 4.14.

5. Implementation.

5.1. Computation of norms.

Norms in the control space.. Let M = MUh
denote the matrix (mass matrix

if U = L2) M = ((ψi, ψj)U )i,j for the basis (ψi) of Uh where (·, ·)U is the inner
product in the Hilbert space U . Then functions uh ∈ Uh have the representation
uh =

∑
uiψi =: Ψh~u and we may identify Uh with the Hilbert space (Rl, (·, ·)M ),

where the scalar product is given by (~u,~v)M = ~uTM~v and ‖~u‖M =
√
~uTM~u is the

induced norm. Then for any uh = Ψh~u ∈ Uh

‖uh‖U = ‖uh‖Uh
= ‖~u‖M .

Furthermore, by the Riesz representation theorem the dual space U∗h can be identified
with Uh, i.e., all functionals u∗h ∈ U∗h = Uh are given by

〈u∗h, uh〉U∗h ,Uh
= (u∗h, u

h)Uh
= (u∗h, u

h)U = (~u∗, ~u)M , ‖u∗h‖U∗h
= ‖u∗h‖Uh

= ‖~u∗‖M ,

where u∗h = Ψh~u
∗. If, moreover, u∗h ∈ U∗h is given by uh = Ψh~u 7→ ~vT~u (which is

e.g. the case for the euclidean representation of the reduced gradient) then u∗h has
the representation u∗h = Ψh(M−T~v) ∈ Uh, since

〈u∗h, uh〉U∗h ,Uh
= ~vT~u = (M−T~v, ~u)M

and one has

‖u∗h‖U∗h
= ‖~u∗‖M = ‖M−T~v‖M = ‖~v‖M−T .

In this way one can in particular compute a discrete representation and discrete norm
of gradients in U∗h = Uh that are appropriate in the function space setting.
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Norms in state space and test function space.. If Y and V are Hilbert
spaces then the discrete norms ‖ · ‖Yh

, ‖ · ‖Y ∗
h
, ‖ · ‖Vh

, ‖ · ‖V ∗
h

can be computed
analogously as for the control space, where now MYh

= ((ψi, ψj)Y )i,j for the basis
(ψi) of Yh and MVh

= ((ψi, ψj)V )i,j for the basis (ψi) of Vh have to be used instead
of MUh

. In particular, the discrete norm of the residual in the constraint ‖Ch
k ‖V ∗

h

can be computed. In the case Y = H1
0 (Ω) the matrix MYh

is the sum of the usual
stiffness and mass matrices. Often a spectrally equivalent (independent of the mesh
size) matrix M̃Yh

is used to reduce the costs for computing ‖ · ‖Yh
, ‖ · ‖Y ∗

h
.

5.2. Computation of the quasi–normal component. The quasi–normal
component sn

k is an approximate solution of the trust–region subproblem (3.1) and it
is required to satisfy (3.2).
One method to guarantee (3.2) is to use scaled approximate solutions which may be
produced by the following simple procedure.

Apply an appropriate iterative solver for the linearized state equation (Ch
y )kz

n =
−Ch

k until with a fixed ν ∈ (0, 1) the stopping criterion holds

‖(Ch
y )kz

n + Ch
k ‖V ∗

h
≤ ν‖Ch

k ‖V ∗
h
.

Then scale this step back into the trust–region, i.e., set

sn
k =

(
tkz

n

0

)
, where tk =

{
1 if ‖zn‖Y ≤ ∆k,
∆k/‖zn‖Y otherwise.

The step sn
k satisfies (3.2) (see Lemma 6.3.3 in [31]).

5.3. Computation of the tangential component.

5.3.1. Computation of the u–component of the tangential step. The u–
component su,k of the tangential step st

k is an approximate solution of the trust–region
subproblem (3.13) that is required to satisfy the fraction of Cauchy decrease condition
(3.14).
As in section 5.1 denote by Ψh the basis of Uh and by M = MUh

the corresponding
mass matrix. Since Uh is a Hilbert space, we may use the identification U∗h = Uh.
Then ĝh

k ∈ U∗h = Uh is given by (ĝh
k , ·)Uh

and −ĝh
k is the steepest descent direction

of m̂k in Uh at su = 0. It is well known that the decrease condition (3.14) can be
ensured as long as su,k provides at least a fixed fraction of the decrease provided by
the Cauchy point

sc
u,k := argmin{m̂k(su) : su = −tĝk, t ≥ 0 and ‖su‖U ≤ ∆k}.

As described in section 5.1 Uh can be identified via the coordinate represention Uh 3
uh = Ψh~u with the Hilbert space (Rl, (·, ·)M ).

In practice, m̂k is given by its coordinate representation ~mk(~su) := m̂k(Ψh~su).
Then the correctly scaled steepest descent direction is given by −M−T∇~su

m̂k(0) (not
by the euclidean gradient representation −∇~su

m̂k(0)).
An approximate solution of (3.13) that satisfies (3.14) can be computed, e.g., by

using the conjugate gradient (cg) method applied to m̂k(su) in the space Uh with
scalar product (·, ·)Uh

, or equivalently to ~mk(~su) in the space (Rl, (·, ·)M ). Here the
cg method with starting point su = 0 is applied to the minimization of m̂k. The cg
method is stopped if an approximate minimum of the quadratic model m̂k is reached,
if negative curvature is detected, or if the iterates leave the trust-region bound. The
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first iterate in the steihaug cg method is the Cauchy-step. Note that it is essential
to apply the cg-method with the scalar product (·, ·)Uh

in order to work with the
correct scaling and discrete norms. If Ĥk can be applied exactly – which is usually
not realistic if the exact reduced Hessian Ĥk = W ∗

kHkWk is used –, then the cg
method ensures that m̂k decreases monotonically, and (3.14) remains satisfied for all
Steihaug cg iterates. If Ĥk is applied inexactly, then one has to compare the function
values m̂k at the first Steihaug cg iterate and at the final Steihaug cg iterate.

Another possibility to compute steps is the application of suitable Krylov solvers
to the KKT system of the tangential problem (3.4). In that case the accuracy condi-
tions for the y-component of the tangential step (3.18) and (3.19) can be integrated in
the solver. If the exact Hessian is Hk available this method in combination with pre-
conditioners as suggested in [5] leads usually to very good steps after a few iterations
on the linear system.

5.3.2. Computation of the y–component of the tangential step. We
have already shown that (3.18) and (3.19) are satisfied if st

y,k satisfies (Ch
y )ks

t
y,k =

−(Ch
u )ksu,k + rt

k with residual

‖rt
k‖V ∗

h
≤ min

{
ξ3∆

1+p
k ,−σ +

√
σ2 + η0predh(sn

k , su,k; ρk)/ρk

}
,

where σ = ‖(Ch
y )ks

n
y,k + Ch

k ‖V ∗
h

+ ‖∆λh
k‖V /(2ρk). Note that all the quantities on

the right hand side of the above inequality are known by the time st
y,k needs to be

computed. Any iterative solver for the linearized state equation can be applied until
the stopping criterion ist satisfied.

6. A Posteriori Error Estimators for Inexact States and Adjoints. In
this section we show for a general semilinear elliptic PDE how the required estimates
(3.33) of the infinite dimensional residual norm in the weak formulation of the PDE
and adjoint PDE can be implemented by using well known a posteriori error estima-
tors.

We consider the following problem

−∆y + s(y) = f in Ω
∂y

∂ν
= g on ΓN

y = 0 on ΓD

(6.1)

where Ω ⊂ R2 is an open polygonal domain with boundary ∂Ω whose boundary
edges are partitioned into a Neumann part ΓN and a disjoint Dirichlet part ΓD,
∂Ω = ΓN ∪ ΓD, s(y) denotes a (nonlinear) operator s : Y → L2(Ω), f ∈ L2(Ω),
g ∈ L2(ΓN ), and ∂y

∂ν denotes the normal derivative of y with the outer unit normal
vector field ν of ∂Ω.

Typical examples for the control action are distributed control, i.e., u = f , and
Neumann boundary control, i.e., u = g.

We use the notation C(y) = 0 for the weak formulation of the PDE

〈C(y), v〉V ∗,V = (∇y,∇v)L2(Ω) + (s(y), v)L2(Ω) − (f, v)L2(Ω) − (g, v)L2(ΓN ).

We set Y = V = H1
D(Ω) := {y ∈ H1(Ω) : y|ΓD

= 0} and assume that the given PDE
has a unique solution. See [21, 27] for sufficient assumptions on s(y). For example
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in the case s(y) = y3, as occuring in the following examples, the theory of maximal
monotone operators guarantees a unique solution operator (f, g) ∈ L2(Ω)×L2(ΓN ) 7→
y ∈ Y for this PDE that is locally bounded, see for example [21, 27].

We discretize the problem by using a finite element method on a regular triangu-
lation Th of Ω consisting of closed triangles T and choose the standard finite element
space

Yh = Vh := {yh ∈ C(Ω) : yh|T ∈ Pk(T ), ∀T ∈ Th},

where Pk(T ) denotes the space of polynomials of degree ≤ k. Then the discretized
constraint is given by

〈Ch(yh), vh〉V ∗
h ,Vh

= (∇yh,∇vh)L2(Ω) + (s(yh), vh)L2(Ω)− (f, vh)L2(Ω)− (g, vh)L2(ΓN ).

Now let yh ∈ Yh be a possibly inexact solution of the finite element discretization.
We want to estimate the residual ‖C(yh)‖V ∗ . The desired estimate (3.33a) is then

‖C(yh)‖V ∗ ≤ C1η(yh) + C2‖Ch(yh)‖V ∗
h

for some bounded constants C1, C2 > 0. As we consider this general semilinear case
the results can be applied not only to the state equation but also to the corresponding
estimate (3.33b) for the adjoint equation.

We consider both averaging and residual based error estimation techniques. As
we will see these well known a posteriori error estimators can be used in our context.

Triangulation and Notation. We will use the following notation for the trian-
gulation. Let as already introduced Th denote a triangulation of the computational
domain Ω ⊂ R2 consisting of closed triangles T . Let N denote the set of nodes
(i.e. the vertices of elements of the triangulation Th) and let E denote the edges
in Th. Let EΩ = E \ {E ∈ E , E ⊂ ∂Ω} denote the inner edges in Ω. We assume
that the edges can be partitioned into the Neumann edges EN = {E ∈ E , E ⊂ Γ̄N}
and the Dirichlet edges ED. For any node z ∈ N we define the patch around z as
ωz := int(∪{T ∈ Th : z ∈ T}). Moreover, let ωT denote the patch around a triangle
T ∈ Th and let ωE be the union of those two triangles that share the edge E ∈ E . Let
hT and hE be Th– and E–piecewise constants on Ω defined by hT |T := hT := diam(T )
and hE |E := hE := diam(E) for T ∈ Th and E ∈ E , respectively. Finally, let
hz = diam(ωz) for z ∈ N and denote by K := N \ ΓD the set of free nodes.

6.1. Averaging Error Estimators for Inexact States. Averaging techniques,
also called (gradient) recovery estimators, estimate the energy error ‖∇y−∇yh‖L2(Ω)

by ‖qh −∇yh‖L2(Ω), where qh is generated from postprocessing ph := ∇yh such that
it is a ”higher order” approximation of ∇y than ph. In global averaging techniques
the procedure consists in approximating the piecewise smooth discontinuous function
ph = ∇yh by some globally continuous function qh = A(ph), which is piecewise a
polynomial of higher degree. A well known example is the ZZ-estimator of Zienkewicz
and Zhu [32] that will be discussed below.

In local averaging techniques ph = ∇yh is locally approximated on patches ω by
polynomials of higher order.

6.1.1. Averaging Error Estimator for Linear Finite Elements. Consider
the linear finite element space

Yh = Vh = Q := {yh ∈ C(Ω) : yh|T ∈ P1(T ), ∀T ∈ Th, y
h|ΓD

= 0}.
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Let yh ∈ Yh and ph = ∇yh be its piecewise constant gradient. Define the average
Azp

h :=
∫

ωz
ph dx/|ωz| ∈ R2 of ph on ωz. With the nodal basis function ϕ (defined as

ϕ continuous, piecewise linear, ϕz(z) = 1 and ϕz(x) = 0 for all x ∈ N \ {z}) define

(6.2) A(ph) :=
∑
z∈N

(Azp
h)ϕz ∈ Q×Q.

Then the averaging estimator is defined by

(6.3) ηA(yh) := ‖∇yh −A(∇yh)‖L2(Ω)2 .

Notice that there is a minimal version

ηM (∇yh) := min
q∈Q2

‖∇yh − q‖L2(Ω)2 ≤ ηA(∇yh).

Remark 6.1.
1. ηA is a reliable and efficient error estimator for the energy norm of the differ-

ence of the smooth solution y of the weak formulation of the Poisson problem
and its first order finite element approximation yh, ‖∇y − ∇yh‖L2(Ω)2 , (cf.
[9, 5.5]).

2. Following Brenner and Carstensen in [9], ηA and ηM are very close and
accurate estimators in many numerical examples.

3. Note that the averaging estimator ηA is locally computable. Indeed, we see
that

ηA(ph) = ‖ph −
∑
z∈N

(Azp
h)ϕz‖L2(Ω)

=

∑
T∈Th

∫
T

[
ph|T −

∑
z∈N

(Azp
h)ϕz|T

]2

dx

1/2

.

Let yh ∈ Yh be an inexact solution of the finite element discretization of the PDE
on the given mesh Th. To evaluate the residual in the variational formulation

(6.4) C(yh) = a(yh, ·)− (g, ·)L2(ΓN ) + (s(y), ·)L2(Ω) − (f, ·)L2(Ω) ∈ V ∗ = Y ∗,

where a(v, w) = (∇v,∇w)L2(Ω), we consider〈
C(yh), v

〉
V ∗,V

= (∇yh,∇v)L2(Ω) − (g, v)L2(ΓN ) + (s(y), v)L2(Ω) − (f, v)L2(Ω).

with v ∈ V , ‖v‖V = 1. Then taking the supremum over all such v we obtain the norm
‖C(yh)‖V ∗ . Let Π denote the L2–projection onto the first–order finite element space
Vh on Ω and set vh := Πv for v ∈ V . By linearity we have

(6.5)
〈
C(yh), v

〉
V ∗,V

=
〈
C(yh), v − vh

〉
V ∗,V

+
〈
C(yh), vh

〉
V ∗,V

.

It remains to derive upper bounds for the last two summands to estimate the norm
as desired.

We begin with the estimation of the first summand of the right hand side of
equation (6.5). Here, we first consider the last two summands of (6.4) tested with
v − vh. Since v − vh is L2-orthogonal onto Πf we obtain∫

Ω

f(v − vh) dx =
∫

Ω

(f −Πf)(v − vh) dx ≤ ‖h−1
T (v − vh)‖L2(Ω)‖hT (f −Πf)‖L2(Ω).
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Notice that ‖hT (f − Πf)‖L2(Ω) = h.o.t. is of higher order. We use h.o.t. to denote
higher order terms. These are generically much smaller than an estimator η, but this
depends on the smoothness of the given data. In general, h.o.t. may be neglected,
but in case if high oscillations they may even dominate η.
The first-order approximation property of the L2 projection,

‖h−1
T (v − vh)‖L2(Ω) ≤ Capprox‖∇v‖L2(Ω) ,

(cf. [9, 5.5]), yields∫
Ω

f(v − vh) dx ≤ Capprox‖∇v‖L2(Ω)‖hT (f −Πf)‖L2(Ω) = h.o.t.(f)

since ‖∇v‖L2(Ω) ≤ ‖v‖V = 1. Similarly we obtain∫
Ω

s(y)(v − vh) dx ≤ Capprox‖∇v‖L2(Ω)‖hT (s(y)−Πs(y)‖L2(Ω) = h.o.t.(s(y)).

Now we proceed to the first two summands in (6.4) tested with v− vh. We follow the
analysis in [9]. Set ph := ∇yh and let q be arbitrary in Qn. Then there holds

(∇yh,∇(v − vh))L2(Ω) − (g, v − vh)L2(ΓN )

=
∫

Ω

(ph − q)∇(v − vh) dx+
∫

Ω

q∇(v − vh) dx−
∫

ΓN

g(v − vh) dS(x).

The H1–stability of the projection Π yields

(6.6) ‖∇(v −Πv)‖L2(Ω) ≤ Cstab‖∇v‖L2(Ω)

for some Cstab > 0. Thus, using the Cauchy–Schwarz inequality and (elementwise)
integration by parts together with Gauss’ theorem we obtain

(∇yh,∇(v − vh))L2(Ω) − (g, v − vh)L2(ΓN ) ≤

≤ Cstab‖∇v‖L2(Ω)‖ph − q‖L2(Ω) −
∫

Ω

(v − vh)div T q dx+
∫

∂Ω

(v − vh)(q · n− g) dS(x)

≤ Cstab‖ph − q‖L2(Ω) + ‖h−1
T (v −Πv)‖L2(Ω)‖hT div T q‖L2(Ω)

+ ‖h−1/2
E (v − vh)‖L2(ΓN )‖h

1/2
E (q · n− g)‖L2(ΓN ).

Note that (div ph)|T = 0 for all T ∈ T , since yh is piecewise linear. Therefore, the
inverse inequality

‖hT div q‖L2(T ) = ‖hT div (q − ph)‖L2(T ) ≤ Cinv‖q − ph‖L2(T ) ∀T ∈ T

yields

‖hT div T q‖L2(Ω) ≤ Cinv‖q − ph‖L2(Ω).

Together with the approximation property of Π on the edges

‖h−1/2
E (v − vh)‖L2(ΓN ) ≤ Capprox‖∇v‖L2(Ω) ,
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(cf. [9, 5.5]), we obtain

(∇yh,∇(v − vh))L2(Ω) − (g, v − vh)L2(ΓN )

≤ (Cstab + CapproxCinv)‖ph − q‖L2(Ω) + Capprox‖h1/2
E (q · n− g)‖L2(ΓN ) .

Hence, the estimates of the summands in (6.4) yield for v ∈ V with ‖v‖V = 1

〈C(yh), v − vh〉 ≤ Cest min
q∈Qn

{
‖ph − q‖L2(Ω) + ‖h1/2

E (q · n− g)‖L2(ΓN )

}
+ h.o.t.(f) + h.o.t.(s(y))

=: Cestη(yh, g) + h.o.t.(f) + h.o.t.(s(y))

(6.7)

where η(yh, g) denotes the desired estimator. Note that the higher order terms may
be integrated in the estimator.

It remains to estimate the second summand in (6.5). The H1–stability and the
first–order approximation property of the L2–projection Π give for v ∈ V with ‖v‖V =
1 and vh := Πv

‖vh‖Vh
= ‖vh‖V ≤ ‖vh − v‖V + ‖v‖V

=
(
‖vh − v‖2L2(Ω) + ‖∇(vh − v)‖L2(Ω)

)1/2

+ ‖v‖V

≤
(
h2
T C

2
approx‖∇v‖2L2(Ω) + C2

stab‖∇v‖2L2(Ω)

)1/2

+ ‖v‖V

≤
(
1 +

√
h2
T C

2
approx + C2

stab

)
‖v‖V

≤ Cproj‖v‖V

(6.8)

with some Cproj > 0, since ‖∇v‖L2(Ω) ≤ ‖v‖V and since hT is bounded. Hence, for
‖v‖V = 1 we obtain ‖vh‖Vh

≤ Cproj and thus by using the definition of Ch

(6.9)
〈
C(yh), vh

〉
V ∗,V

=
〈
Ch(yh), vh

〉
V ∗

h ,Vh
≤ Cproj‖Ch(yh)‖V ∗

h
.

Consequently, the estimation of the summands in (6.5) yields

(6.10) ‖C(yh)‖V ∗ ≤ Cestη(yh, g) + Cproj‖Ch(yh)‖V ∗
h

+ h.o.t.(f) + h.o.t.(s(y))

with η(yh, g) from (6.7). The averaging estimator may then be calculated by (6.3)
having regard to (6.7). If the higher order terms are not neglected, they may be
integrated in the estimator-calculation.

6.1.2. Averaging Error Estimator for Higher Order Finite Elements.
For simplicity the error estimator is developed only for 2-dimensional spaces. Never-
theless the same theory is valid in three space dimensions. Only a few constants in
some proofs will change due to larger overlaps of patches in 3D.
Let d be the (local) polynomial degree of the finite elements and let Pk(G) denote alge-
braic polynomials on the domain G ⊂ R2, of degree at most k. Let Sd = Pd(Th)∩C(Ω)
be the finite element space of continuous functions on Ω that are Th–elementwise
polynomials of degree at most d ∈ N. For generality different polynomial degrees are
allowed. As in the linear finite element case {ϕz}z∈N shall denote the continuous
Th–elementwise linear nodal basis functions.
We follow the analysis in [1] where the authors define a projection operator J on local
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polynomial spaces as follows.
For each fixed node z ∈ N \K they choose a neighboring free node ζ ∈ K and thereby
define a relation R on N where zRz if z ∈ K. Then, they define

ψz :=
∑

ζ∈N ,ζRz

ϕζ and Ωz := int(suppψz).

They require that for each z ∈ K, Ωz is connected and ϕz 6= ψz implies that (∂Ωz)∩ΓD

has a positive surface measure. Then ({ζ ∈ N : ζRz} : z ∈ K) is a partition of N and
(ψz : z ∈ K) is a partition of unity. For each z ∈ K they define the degree (minimal
degree allowed on Ωz minus one)

d(z) := max{k ∈ N0 : Pk(Ωz)ϕz ⊆ S},

where Pk(Ωz) denotes the set of all polynomials on R2 of total degree at most k
restricted to Ωz. The set S ⊆ H1(Ω) is some finite element space consisting of
functions that are Th-elementwise polynomials and globally continuous. Moreover,
one requires that S1

D(Th) := {y ∈ S1(Th) : y|ΓD
= 0} ⊆ S, which implies that d(z) is

well defined and larger than or equal to zero.
For g ∈ L1(Ω), z ∈ N the authors of [1] define gz ∈ Pd(z)(Ω) by∫

Ωz

(gzϕz − gψz)qz dx = 0 ∀qz ∈ Pd(z)(Ωz),

and then they define

(6.11) J g :=
∑
z∈K

gzϕz ∈ S ∩H1
D(Ω).

According to (cf. [1, Rem. 2.2]), J g is well defined .
In the following we state a few results from [1] which are necessary to develop an

estimator for the residual of the given PDE (6.1) in the presence of inexact states.
Proposition 6.2. There exist (hT , hE)–independent constants Cstab > 0, Capprox >

0 and C > 0 such that for all g ∈ H1
D(Ω) and f ∈ L2(Ω)

1) the stability of J

‖∇(g − J g)‖L2(Ω) ≤ Cstab‖∇g‖L2(Ω),

2) the approximation properties of J

‖h−1
T (g − J g)‖L2(Ω) ≤ Capprox‖∇g‖L2(Ω),

‖h−1/2
E (g − J g)‖L2(ΓN ) ≤ Capprox‖∇g‖L2(Ω),

3) and the enhanced stability of J

∫
Ω

f(g − J g) dx ≤ C‖∇g‖L2(Ω)

(∑
z∈K

h2
z min

fz∈Pd(z)(Ωz)
‖f − fz‖2L2(Ωz)

) 1
2

hold. The constants depend only on Ω, ΓD, ΓN , the degrees d(z), z ∈ K, and the
shapes of the elements T ∈ Th and the patches Ωz, z ∈ K.

For a proof see [1, Thm. 2.1].
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Lemma 6.3. Suppose S = {vh ∈ C(Ω) : ∀T ∈ T , vh|T ∈ Pd(T )(T )} for positive
integers d(T ), T ∈ Th, and let dE, E ∈ E, be nonnegative integers. Then there exists
a constant C > 0 such that for all uh ∈ S and each z ∈ K we have

min
qz∈Pd(z)+1(Ωz)2

‖∇uh − qz‖2L2(Ωz) ≤ C
∑

E∈EΩz

min
qE∈PdE

(ωE)2
‖∇uh − qE‖2L2(ωE),

where EΩz is the set of edges E ⊂ Ω̄z with E 6⊂ ∂Ωz and ωE =
⋃

T∈Th,E∈T T , E ∈ E,
is the union of those triangles (tetrahedra) that share the edge (face) E.
The constant C depends on the degrees d(z) and dE as well as on the shapes of the
elements and patches, but not on their diameters.

For a proof see [1, Lem. 3.1].
Lemma 6.4. Let k and dE, E ∈ E, be nonnegative integers and let ph be a

(possibly discontinuous) piecewise polynomial on Th with local degrees on T ∈ Th at
most k and let gh be a piecewise polynomial on E ∩ΓN with local degrees at most k+1.
Then,

min
qh∈Sk+1(Th)2

(
‖ph − qh‖2L2(Ω) + ‖h1/2

E (gh − qh · ν)‖2L2(ΓN )

)
≤ C

∑
E∈EΩ∪EN

min
qE∈PdE

(ωE)2

(
‖ph − qE‖2L2(ωE) + hE‖gh − qE · ν‖2L2(E∩ΓN )

)
with a constant C > 0 that depends on the degrees k and dE as well as on the shapes
of the elements and patches but not on their diameters.

For a proof see [1, Lem. 3.2].

The averaging error estimator is then defined by
(6.12)

ηE(yh, g) =
( ∑

E∈EΩ∪EN

min
qE∈PdE

(ωE)2

qE ·ν=gh on E∩ΓN

‖ph − qE‖2L2(ωE)

)1/2

+ ‖h1/2
E (g − gh)‖L2(ΓN ) ,

where gh is a piecewise polynomial on EN with local degrees at most dE . The polyno-
mial degree dE on ωE is chosen accordingly to the elementwise degrees of yh on ωE .
If problem (6.1) is a boundary control problem, then g equals the control which is
usually given in the finite element space which arises from the restriction of Yh onto
the Neumann boundary. Then one chooses gh = g. Otherwise it is reasonable to
choose gh as suitable projection of g onto the restriction of the finite element space to
the Neumann boundary Sd

D|D. According to [1] for g ∈ L2(ΓN ) with g|E ∈ HdE (E)
for all E ∈ E there exists gh ∈ L∞(ΓN ) with gh|E ∈ PdE

(E) for all E ∈ EN such that
the last summand is of higher order, i.e.

‖h1/2
E (g − gh)‖L2(ΓN ) ≤ Ch

de+1/2
E ‖∂dEg/∂sdE‖L2(ΓN )

for some C > 0.
Now we have the tools to estimate ‖C(yh)‖V ∗ . Let Yh = Vh = Sd

D for some d ∈ N
and let yh ∈ Yh. Let v ∈ V with ‖v‖V = 1 and let J be the projection onto Yh from
(6.11). Then we have

(6.13)
〈
C(yh), v

〉
=
〈
C(yh), v − J v

〉
+
〈
C(yh),J v

〉
.
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We begin with the estimation of the first summand. Let Q denote the space of
gradients in L2(Ω)2 that are continuous and Th–elementwise polynomials with degree
at most d, Q = (Sd)2. Set ph = ∇yh and let q ∈ Q. Then we obtain

〈C(yh), v − J v〉 =a(yh, v − J v)− (g, v − J v)L2(ΓN )

+ (s(yh), v − J v)L2(Ω) − (f, v − J v)L2(Ω) .
(6.14)

For the third and fourth summand in the latter expression (6.14) we use the enhanced
stability of J from Lemma 6.2 and get

∫
Ω

s(yh)(v − J v) dx ≤ C‖∇v‖L2(Ω)

(∑
z∈N

h2
z min

fz∈Pd−1(ωz)
‖s(yh)− fz‖2L2(Ω)

) 1
2

=:h.o.t.(s(yh)),

and, similarly,
∫
Ω
f(v − J v) dx ≤ h.o.t.(f).

We go on with the first two summands from equation (6.14), and see, using
the Cauchy–Schwarz inequality, integration by parts, Gauss’ theorem, the stability
property of J , Minkowski’s theorem and the triangle inequality,∫

Ω

∇yh∇(v − J v) dx−
∫

ΓN

g(v − J v) dS(x)

=
∫

Ω

(ph − q)∇(v − J v) dx+
∫

Ω

q∇(v − J v) dx−
∫

ΓN

g(v − J v) dS(x)

≤ ‖ph − q‖L2(Ω)‖∇(v − J v)‖L2(Ω) −
∫

Ω

(v − J v)div T q dx

+
∫

∂Ω

(v − J v)q · ν dS(x)−
∫

ΓN

g(v − J v) dS(x)

≤ Cstab‖ph − q‖L2(Ω) + C‖∇v‖L2(Ω)

(∑
z∈N

min
fz∈Pd−1(ωz)

‖hz(div T (q)− fz)‖2L2(ωz)

) 1
2

−
∫

ΓN

(q · ν − g)(v − J v) dS(x)

≤ Cstab‖ph − q‖L2(Ω) + C

(∑
z∈N

min
qz∈Pd(ωz)2

‖hzdiv T (q − qz)‖2L2(ωz)

) 1
2

+ ‖h1/2
E (q · ν − g)‖L2(ΓN )‖h

−1/2
E (v − J v)‖L2(ΓN )

≤ Cstab‖ph − q‖L2(Ω) + C

(∑
z∈N

‖hzdiv T (q − ph)‖2L2(ωz)

) 1
2

+ C

(∑
z∈N

min
qz∈Pd(ωz)2

‖hzdiv T (ph − qz)‖2L2(ωz)

) 1
2

+ Capprox‖h1/2
E (q · ν − g)‖L2(ΓN )

≤ Cstab‖ph − q‖L2(Ω) + 3KC‖hT div T (q − ph)‖L2(Ω)

+ C

(∑
z∈N

min
qz∈Pd(ωz)2

‖hzdiv T (ph − qz)‖2L2(ωz)

) 1
2

+ Capprox‖h1/2
E (q · ν − g)‖L2(ΓN ),
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since hz ≤ KhT , z ∈ T ∈ Th, for some K > 0 and vol(∪z∈Nωz) ≤ 3vol(Ω). A
Th–elementwise inverse estimate shows

‖hT div T (ph − q)‖L2(T ) ≤ Cinv‖ph − q‖L2(T ) ∀T ∈ Th,

and

‖hzdiv T (ph − qz)‖L2(ωz) ≤ Cinv‖ph − qz‖L2(ωz) ∀z ∈ N ,

for some Cinv > 0. Hence, we obtain

a(yh, v − J v)− (g, v − J v)L2(ΓN )

≤ Cstab‖ph − q‖L2(Ω) + 3KCCinv‖ph − q‖L2(Ω)

+ CCinv

(∑
z∈N

min
qz∈Pd(ωz)

‖ph − qz‖2L2(ωz)

) 1
2

+ Capprox‖h1/2
E (q · ν − g)‖L2(ΓN ).

All this together gives, using Lemma 6.3 and Lemma 6.4, and minimizing over the
arbitrarily chosen q ∈ Q,〈

C(yh), v − J v
〉

≤ (Cstab + 3KCCinv) min
q∈Q

‖∇yh − q‖L2(Ω)

+ CCinv

(∑
z∈N

min
qz∈Pd(ωz)

‖∇yh − qz‖2L2(ωz)

) 1
2

+ Capprox

(
‖h1/2
E (q · ν − gh)‖L2(ΓN ) + ‖h1/2

E (gh − g)‖L2(ΓN )

)
+ h.o.t.(s(yh)) + h.o.t.(uh)

≤ C̃est

∑
E∈EΩ

min
qE∈PdE

(ωE)2

qE ·ν=gh on E∩ΓN

‖∇yh − qE‖2L2(ωE)


1
2

+ Capprox‖h1/2
E (gh − g)‖L2(ΓN ) + h.o.t.(s(yh)) + h.o.t.(uh)

≤ CestηE(yh, g) + h.o.t.(s(yh)) + h.o.t.(uh).

Now, we come to the second summand of (6.13). Using proposition 6.2, we obtain as
in (6.8) in the linear finite element case, with projection operator J instead of Π,

‖J v‖V ≤
(
1 +

√
h2
T C

2
approx + C2

stab

)
‖v‖V ≤ Cproj‖v‖V ,

for some Cproj > 0. Thus, we get〈
C(yh, uh),J v

〉
≤ Cproj sup

‖vh‖Vh
=1

〈
C(yh, uh), vh

〉
≤ Cproj‖Ch(yh, uh)‖V ∗

h
.

Hence, the estimations of the first and second summand in (6.13) yield

(6.15) ‖C(yh)‖V ∗ ≤ CestηE(yh, g) + Cproj‖Ch(yh)‖V ∗
h

+ h.o.t.(s(yh)) + h.o.t.(uh).
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If the higher order terms are not neglected, they may be estimated with the following
lemma and integrated in the estimator–calculation.

Lemma 6.5. For all z ∈ N there exists an hz–independent constant C > 0 such
that, if f |ωz ∈ Hd(ωz), d ≥ 1, we have (Ddf = (∂αf)|α|=d denotes the vector of all
partial derivatives of order d)

min
fz∈Pd−1(ωz)

‖f − fz‖L2(ωz) ≤ Chd
z‖Ddf‖L2(ωz).

For a proof see [1, Lem. 4.1].

6.2. Residual Based Error Estimators for Inexact States. Using the same
idea from the previous section on averaging estimates we obtain the required estima-
tion for the residual in the given semilinear elliptic PDE (6.1).

Denote by Ih : L2(Ω) → S1
D(Th) the interpolation operator of Clément (cf. [30]).

Remark 6.6. Recall the following properties of the quasi-interpolation operator
Ih: Let v ∈ H1(Ω), let ωT denote the patch around a triangle T ∈ Th and let ωE

denote the patch around an edge E ∈ E. Then there exists C > 0 such that
1. ‖v − Ihv‖L2(T ) ≤ ChT ‖∇v‖L2(ωT )

2. ‖v − Ihv‖L2(E) ≤ Ch
1/2
E ‖∇v‖L2(ωE)

3. ‖∇(v − Ihv)‖L2(T ) ≤ C‖∇v‖L2(ωT )

Using finite overlap property 3 yields ‖∇(v − Ihv)‖L2(Ω) ≤ C‖∇v‖L2(Ω) for some
C > 0. For a proof see [30]. Now we follow the analysis in [17, pp. 287-289] and use
the same arguments. Recall that we do not have Galerkin orthogonality since we do
not assume that yh is an exact solution of Ch(yh) = 0. To be able to use the same
techniques, again we devide the residual into two parts

(6.16) 〈C(yh), v〉V ∗,V = 〈C(yh), v − Ihv〉V ∗,V + 〈C(yh), Ihv〉V ∗,V

for v ∈ V and then take the supremum over all testfunctions v ∈ V with norm 1. We
begin with the estimation of the first summand. Observe that

〈C(y), v − Ihv〉V ∗,V =
∑
T∈T

(rT , v − Ihv)L2(T ) +
∑
E∈E

(rE , v − Ihv)L2(E)

with the elementwise residuals rT (y) = (−∆y+s(y)−f)|T of the PDE and the jumps
rE(y) = [νE · ∇y]E of the (discontinuous) normal derivative of y across the edges E.
Hence, using the standard arguments we obtain for v ∈ V with ‖v‖V = 1

〈C(y), v − Ihv〉V ∗,V ≤ Cestη(y)

where

η2(y) =
∑
T∈T

η2
T (y) and η2

T (y) = h2
T ‖rT (y)‖2L2(T ) + 1

2

∑
E∈T

hE‖rE(y)‖2L2(E) .

It remains to estimate the second summand in (6.16). Using the properties from
Remark 6.6 of the Clément interpolation operator we see that

‖Ihv‖V ≤ ‖Ihv − v‖V + ‖v‖V

=
(
‖Ihv − v‖2L2(Ω) + ‖∇(Ihv − v)‖2L2(Ω)

)1/2 + ‖v‖V

≤
(
C2h2‖∇v‖2L2(Ω) + C2‖∇v‖2L2(Ω)

)1/2 + ‖v‖V

≤ Cproj‖v‖V = Cproj
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for v ∈ V with ‖v‖V = 1. Consequently, we obtain

‖C(y)‖V ∗ ≤ Cestη(y) + Cproj‖Ch(y)‖V ∗
h
.

7. Numerical Results.

7.1. A Distributed Optimal Control Problem.

Problem 7.1. We consider the following problem

min
y∈H1

0 (Ω),u∈L2(Ω)
f(y, u) := 1

2‖y − yd‖2L2(Ω) + α
2 ‖u‖

2
L2(Ω)

s.t. −∆y + y3 = u in Ω,
y = 0 on ∂Ω,

where Ω ⊂ R2 is a polygonal domain, yd ∈ H1
0 (Ω) and α > 0.

The cost function and the constraint operator in the weak formulation are twice
continuously Fréchet differentiable. These functions and their derivatives are bounded
on a bounded subset D ⊂ Y × U . Moreover, the theory of maximal monotone op-
erators guarantees that there exists a unique solution operator for this PDE that is
uniformly bounded. Hence, the required assumptions for algorithm 3.9 are satisfied.
It is furthermore well known that this optimization problem has a solution.

7.1.1. Estimators for the convergence conditions. We are in the situation
to use error estimators as in section 6 for the infinite dimensional norm of the residual
in the PDE constraint.
The Lagrangian function is given by

l(y, u, λ) = 1
2‖y − yd‖L2(Ω) + α

2 ‖u‖L2(Ω) + 〈λ,C(y, u)〉H1
0 (Ω),H−1(Ω) .

Thus, the u–gradient of the Lagrangian reads lu(y, u, λ) = (αu − λ, ·)L2(Ω). Hence,
the norm of the u–gradient of the Lagrangian is easy to evaluate following Riesz
representation theorem: ‖lu(y, u, λ)‖L2(Ω)∗ = ‖αu − λ‖L2(Ω). Thus, the convergence
condition on the u–gradient of the Lagrangian (3.31) is always satisfied since we
calculate exact L2–norms for a given discrete control uh and discrete adjoint state λh.
The y–gradient of the Lagrangian l(y, u, λ) is given by

ly(y, u, lambda) = (y − yd, ·)L2(Ω) + a(λ, ·) + (3λy2, ·)L2(Ω).

Again, the residual in the adjoint equation can be estimated with the techniques from
section 6.

7.1.2. Numerical Results for the Distributed Optimal Control Prob-
lem. For the testproblem 7.1 we used the following configuration: Ω = L-shaped
domain, α = 1e − 4, yd = 1. We used preconditioned Krylov solvers as iterative
solvers with incomplete Cholesky factorizations in the preconditioner on the KKT-
system of the tangential step and in the quasi-normal step. We calculated both with
linear finite elements and the averaging ZZ-estimator and with quadratic finite ele-
ments and the averaging estimator proposed by Bartels and Carstensen. We show
the results for quadratic finite elements and the averaging estimator of Bartels and
Carstensen.

In figure 7.1 we see a table of error estimators with the iteration number in the
first column, the error estimator for the constraint in the second column, the error
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estimator for the adjoint state in the third column, the norm of the inexact reduced
gradient in the fourth column, the degrees of freedom in the fifth column and the
degrees of freedom one would need to achieve the same accuracy on uniformly refined
meshes in the sixth column.

It. ηC,h(xk) ηLy,h(λk + ∆λk) ‖ĝk‖U∗ DOF Uniform DOF
1 3.2e-1 1.8e-2 5.6e-2 161 161
2 2.2e-1 8.7e-3 5.1e-2 325 705
3 2.1e-1 9.6e-3 3.4e-2 523 705
4 1.3e-1 3.0e-3 1.6e-2 927 2945
5 1.5e-1 2.2e-3 2.1e-3 927 2945
6 1.2e-1 1.8e-3 1.7e-3 1399 2945
7 6.7e-2 1.1e-3 1.2e-3 2459 12033
8 6.5e-2 1.0e-3 1.4e-4 2459 12033
9 4.8e-2 7.2e-4 2.5e-3 3834 48641
10 2.7e-2 4.7e-4 2.4e-3 7848 195585
11 1.7e-2 2.4e-4 1.9e-4 12230
12 1.7e-2 2.8e-4 1.1e-3 12230
13 1.6e-2 2.4e-4 2.4e-5 12230

Fig. 7.1. Table of error estimators

The same accuracy on uniform meshes would here require more than 20 times the
degrees of freedom on our adaptively refined meshes.

In figure 7.2 we see the last grid produced by the multilevel SQP algorithm as
well as the optimal control and the optimal state.
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Fig. 7.2. Last (9th) grid, optimal control, optimal state

7.2. A Boundary Control Problem. Problem 7.2. We consider the follow-
ing problem taken from [2].

min
y∈H1(Ω),u∈L2(ΓC)

f(y, u) := 1
2‖y − yd‖2L2(ΓO) + α

2 ‖u‖
2
L2(ΓC)

s.t. −∆y + y3 − y = 1 in Ω,
∂ny = 0 on ∂Ω \ ΓC ,
∂ny = u on ΓC .

where α = 1e − 4, yd = 1, ∂n denotes the normal derivative, Ω = is a T-shaped
domain, ΓC bottom boundary of T, ΓO upper boundary of T, i.e. T = int([1/4, 3/4]×
[0, 1/2] ∪ [0, 1] × [1/2, 3/4]), ΓO = [0, 1] × {3/4}, ΓC = [1/4, 3/4] × {0}. Again
we used preconditioned Krylov solvers as iterative solvers with incomplete Cholesky
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factorizations in the preconditioner on the KKT-system of the tangential step and in
the quasi-normal step. We calculated with quadratic finite elements and the averaging
estimator from Bartels and Carstensen.

In figure 7.3 we see a table of error estimators with the iteration number in the
first column, the error estimator for the constraint in the second column, the error
estimator for the adjoint state in the third column, the norm of the inexact reduced
gradient in the fourth column and the degrees of freedom in the fifth column.

It. ηC,h(xk) ηLy,h(λk + ∆λk) ‖ĝk‖U∗ DOF
1 2.7e-3 2.4e-3 3.4e-2 569
2 8.0e-3 8.4e-5 2.1e-3 569
3 9.6e-3 7.9e-4 6.0e-2 569
4 8.4e-3 3.9e-4 3.4e-2 569
5 5.3e-3 8.4e-5 6.1e-5 700
6 3.4e-3 6.9e-5 8.5e-5 934
7 2.3e-3 6.3e-5 3.6e-5 1235
8 1.5e-3 5.9e-5 3.6e-5 1755
9 1.1e-3 5.7e-5 8.2e-5 2596
10 7.6e-4 5.1e-5 3.4e-5 4353
11 7.6e-4 5.1e-5 5.8e-5 4353
12 5.3e-4 4.1e-5 1.9e-5 7193
13 5.3e-4 4.1e-5 1.8e-5 7193
14 3.7e-4 3.8e-5 1.8e-5 11965

Fig. 7.3. Table of error estimators

In figure 7.4 we see the last grid produced by the multilevel SQP algorithm as
well as the optimal control and the optimal state.
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[27] F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen, Vieweg, 2005.
[28] S. Ulbrich, Generalized SQP methods with “parareal” time-domain decomposition for time-

38



dependent PDE-constrained optimization, in Real-time PDE-constrained optimization,
vol. 3 of Comput. Sci. Eng., SIAM, Philadelphia, PA, 2007, pp. 145–168.

[29] M. Vallejos and A. Borz̀ı, Multigrid optimization methods for linear and bilinear elliptic
optimal control problems, Computing, 82 (2008), pp. 31–52.

[30] R. Verfürth, A posteriori error estimators for convection-diffusion equations, Numer. Math.,
80 (1998), pp. 641–663.

[31] L. N. Vicente, Trust-region interior point algorithms for a class of nonlinear programming
problems, PhD thesis, Rice University, Houston, TX, USA, 1996.

[32] O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for prac-
tical engineering analysis, Internat. J. Numer. Methods Engrg., 24 (1987), pp. 337–357.

39


