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Abstract. In this paper we present an approach to shape optimization which
is based on continuous adjoint computations. If the exact discrete adjoint
equation is used, the resulting formula yields the exact discrete reduced gra-
dient. We first introduce the adjoint-based shape derivative computation in a
Banach space setting. This method is then applied to the instationary Navier-
Stokes equations. Finally, we give some numerical results.
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1. Introduction

In this paper, we consider the optimization of the shape of a body that is exposed
to incompressible instationary Navier-Stokes flow in a channel. The developed
techniques are quite general and can, without conceptual difficulties, be used to
address a wide class of shape optimization problems with Navier-Stokes flow. The
goal is to find the optimal shape of the body B, which is exposed to instationary
incompressible fluid, with respect to some quantity of interest, e.g. drag, under
constraints on the shape of B.

In a general setting, the shape optimization problem can be stated in the
following way: Minimize an objective functional J̄ , depending on a domain Ω and
a state ỹ = ỹ(Ω) ∈ Y (Ω). The domain Ω is contained in a set of admissible domains
Oad. Furthermore, ỹ and Ω are coupled by the state equation Ē(ỹ,Ω) = 0. Thus,
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the abstract shape optimization problem reads

min J̄(ỹ,Ω)

s.t. Ē(ỹ,Ω) = 0, Ω ∈ Oad.

The constraint Ē(ỹ,Ω) = 0 is a partial differential equation defined on Ω,
which in our case is given by the instationary incompressible Navier-Stokes equa-
tions.

Shape optimization is an important and active field of research with many
engineering applications, especially in the areas of fluiddynamics and aerodynam-
ics. Detailed accounts of the theory and applications of shape optimization can
be found in, e.g., [1, 2, 3, 9, 15, 18]. We use the approach of transformation to a
reference domain, as originally introduced by Murat and Simon [17], see also [8].
The domain is then fixed and the design is described by a transformation from a
fixed domain to the domain Ω corresponding to the current design. This makes
optimal control techniques readily applicable. Furthermore, as observed by Guil-
laume and Masmoudi [8] in the context of linear elliptic equations, discretization
and optimization can be made commutable. This means that, if certain guidelines
are followed, then the discrete analogue of the continuous adjoint representation
of the derivative of the reduced objective function is the exact derivative of the
discrete reduced objective function. This allows to circumvent the tedious differ-
entiation of finite element code with respect to the position of the vertices of the
mesh.

The outline of this paper is as follows: In section 2, we will present our ap-
proach for the derivative computation in shape optimization in a general setting.
These general results will be applied to the instationary incompressible Navier-
Stokes equations in section 3. In section 4 we present the discretization and stabi-
lization techniques we use to solve the Navier-Stokes equations numerically, which
are based on the cG(1)dG(0) variant of the G2-finite-element discretization by
Eriksson, Estep, Hansbo, Johnson and others [4, 5]. Moreover, we explain how
we apply the adjoint calculus to obtain conveniently exact shape gradients on the
discrete level. We will then present numerical results obtained for a model problem
in section 5, where we also briefly discuss the choice of shape transformations and
parametrizations. Finally, in section 6, we will give conclusions and an outlook to
future work.

2. The shape optimization problem

In this section, we present the framework that we will use for shape derivative
computation in a functional analytical setting. We first transform the general shape
optimization problem, which is defined on varying domains, into a problem that
is defined on a fixed reference domain Ωref. Then, after introducing the reduced
optimization problem on a space T of transformations of Ωref, we state optimality
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conditions and an adjoint based representation for the reduced gradient of the
objective function.

2.1. Problem formulation on a reference domain

We consider the abstract shape optimization problem given by

min J̄(ỹ,Ω)

s.t. Ē(ỹ,Ω) = 0, Ω ∈ Oad.

Here, Oad denotes the set of admissible domains Ω ⊂ R
d, J̄ is a real valued

objective function defined on a Banach space Y (Ω) of functions defined on Ω ⊂ R
d,

J̄ : {(ỹ,Ω) : ỹ ∈ Y (Ω), Ω ∈ Oad} → R,

and Ē is an operator between function spaces Y (Ω) and Z(Ω) defined over Ω,

Ē : {(ỹ,Ω) : ỹ ∈ Y (Ω),Ω ∈ Oad} → {z̃ : z̃ ∈ Z(Ω),Ω ∈ Oad} .

We now transform the shape optimization problem into a more convenient form.
To this end, we consider a reference domain Ωref ∈ Oad and interpret admissible
domains Ω ∈ Oad as images of Ωref under suitable transformations. This is done
by introducing a Banach space T (Ωref) of bicontinuous transformations of Ωref.
We select a suitable subset Tad ⊂ T (Ωref) of admissible transformations. The set
Oad of admissible domains is then

Oad = {τ(Ωref) : τ ∈ Tad}.

We assume that

Y (Ωref) = {ỹ ◦ τ : ỹ ∈ Y (τ(Ωref))}

ỹ ∈ Y (τ(Ωref)) 7→ y := ỹ ◦ τ ∈ Y (Ωref) is a homeomorphism

}

∀ τ ∈ Tad. (A)

Then, we can define the following equivalent optimization problem, which is en-
tirely defined on the reference domain:

min J(y, τ)

s.t. E(y, τ) = 0, τ ∈ Tad.
(2.1)

Here, the operator E : Y (Ωref) × T (Ωref) → Z(Ωref) is defined such that for
all τ ∈ Tad and ỹ ∈ Y (τ(Ωref)) it holds that

E(y, τ) = 0 ⇐⇒ Ē(ỹ, τ(Ωref)) = 0,

where y = ỹ ◦ τ . The objective function J is defined in the same fashion.

In the following, we will consequently denote by ỹ the functions on the phys-
ical domain τ(Ωref) and by y the corresponding function on the reference domain
Ωref, where

y = ỹ ◦ τ.
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Remark 2.1. If, which is the typical case for elliptic partial differential equations,
Y (Ω) = H1

0 (τ(Ωref)), Z(Ω) = H−1(τ(Ωref)) with τ ∈ Tad, then (A) holds if we
choose T (Ωref) = W 1,∞(Ω′) and if we require that all τ ∈ Tad ⊂ W 1,∞(Ω′) are
such that τ : Ω̄ref → τ(Ω̄ref) is a bi-Lipschitzian mapping. Here, Ω′ ⊃ Ω̄ref is open
and bounded with Lipschitz boundary.

For other spaces Y (Ω) and Z(Ω), it can be necessary to impose further re-
quirements on Tad.

If Ē is given in variational form then the operator E can be obtained by using
the transformation rule for integrals. This will be carried out for the instationary
Navier-Stokes equations in section 3.

2.2. Reduced problem and optimality conditions

In the following, we will consider the optimization problem on the reference domain
(2.1), which has the form

min J(y, τ)

s.t. E(y, τ) = 0, τ ∈ Tad.
(2.1)

We denote by Ey and Eτ the partial derivatives of E with respect to y and τ .
In order to derive first order optimality conditions, we make the following

assumptions:

(A1) Tad ⊂ T (Ωref) is nonempty, closed, convex and assumption (A) holds.
(A2) J : Y (Ωref) × T (Ωref) → R and E : Y (Ωref) × T (Ωref) → Z(Ωref) are continu-

ously Fréchet-differentiable.
(A3) There exists an open neighborhood T ′

ad ⊂ T (Ωref) of Tad and a unique solution
operator S : T ′

ad → Y (Ωref), assigning to each τ ∈ T ′
ad a unique y(τ) ∈

Y (Ωref), such that E(y(τ), τ) = 0.
(A4) The derivative Ey(y(τ), τ) ∈ L(Y (Ωref) × T (Ωref), Z(Ωref)) is continuously

invertible for all τ ∈ T ′
ad.

Under these assumptions y(τ) is continuously differentiable on τ ∈ T ′
ad ⊃ Tad by

the implicit function theorem. Thus, it is reasonable to define the following reduced
problem on the space of transformations T (Ωref):

min j(τ) := J(y(τ), τ)
s.t. τ ∈ Tad

,

where y(τ) is given as the solution of E(y(τ), τ) = 0.
In the following we will use the abbreviations

Tref := T (Ωref), Yref := Y (Ωref), Zref := Z(Ωref).

In order to derive optimality conditions and to compute the reduced gradient j′(τ),
we introduce the Lagrangian function L : Yref × Tref × Z∗

ref → R,

L(y, τ, λ) := J(y, τ) + 〈λ,E(y, τ)〉Z∗

ref
,Zref

,

with Lagrange multiplier λ ∈ Z∗
ref.
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Under assumptions (A1)–(A4) a local solution (y, τ) ∈ Yref×Tad of (2.1) sat-
isfies with an appropriate adjoint state λ ∈ Z∗

ref the following first order necessary
optimality conditions.

Lλ(y, τ, λ) = E(y, τ) = 0 (state equation)

Ly(y, τ, λ) = Jy(y, τ) + E∗
y(y, τ)λ = 0 (adjoint equation)

〈Lτ (y, τ, λ), τ̃ − τ〉T∗

ref
,Tref

= 〈Jτ (y, τ) + E∗
τ (y, τ)λ, τ̃ − τ〉T∗

ref
,Tref

≥ 0 ∀τ̃ ∈ Tad.

2.2.1. Adjoint-based shape derivative computation on the reference domain. By
using the adjoint equation the reduced gradient j′(τ) can be determined as follows:

1. For given τ , find y(τ) ∈ Yref by solving the state equation

〈E(y, τ), ϕ〉Zref,Z∗

ref
= 0 ∀ϕ ∈ Z∗

ref

2. Find the corresponding Lagrange multiplier λ ∈ Z∗
ref by solving the adjoint

equation

〈λ,Ey(y, τ)ϕ〉Z∗

ref
,Zref

= −〈Jy(y, τ), ϕ〉Y ∗

ref
,Yref

∀ϕ ∈ Yref (2.2)

3. The reduced gradient with respect to τ is now given by

〈j′(τ), · 〉T∗

ref
,Tref

= 〈λ,Eτ (y, τ) · 〉Z∗

ref
,Zref

+ 〈Jτ (y, τ), · 〉T∗

ref
,Tref

. (2.3)

2.2.2. Adjoint-based shape derivative computation on the physical domain. For
the application of optimization algorithms it is convenient to solve, for a given
iterate τk ∈ T (Ωref), an equivalent representation of the optimization problem on

the domain Ωk := τk(Ωref). To this end, we introduce operators Ẽ, J̃ and j̃, which
differ from E, J and j only in that the function spaces Y , Z and T are defined on
Ωk instead of Ωref, i.e.,

Ẽ(ỹ, τ̃) = 0 ⇐⇒ E(y, τ̃ ◦ τk) = 0, where y = ỹ ◦ (τ̃ ◦ τk).

Then we have the relation

j̃(τ̃) = j(τ̃ ◦ τk) = j(τ) and therefore τ̃ ◦ τk = τ, i.e., τ̃ = τ ◦ τ−1
k .

We are thus led to the following procedure for computing the reduced gradient:

1. For id : Ωk → Ωk, id(τk(x)) = τk(x), x ∈ Ωref, find ỹk ∈ Y (Ωk) by solving
the state equation

〈Ẽ(ỹk, id), ϕ〉Z(Ωk),Z(Ωk)∗ = 0 ∀ϕ ∈ Z(Ωk)∗,

where ỹk(τk(x)) = yk(x), x ∈ Ωref. This corresponds to solving the standard
state equation in variational form on the domain Ωk, which in the abstract
setting was denoted by Ē(ỹ,Ωk) = 0.

2. Find the corresponding Lagrange multiplier λ̃k ∈ Z(Ωk)∗ by solving the
adjoint equation

〈λ̃k, Ẽỹ(ỹk, id)ϕ〉Z(Ωk)∗,Z(Ωk) = −〈J̃ỹ(ỹk, id), ϕ〉Y (Ωk)∗,Y (Ωk) ∀ϕ ∈ Y (Ωk),

where λ̃k(τk(x)) = λk(x), x ∈ Ωref. This corresponds to the solution of the
standard adjoint equation on Ωk.
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3. The reduced gradient applied to V ∈ T (Ωref) is now given by

〈j′(τk), V 〉T∗

ref
,Tref

= 〈j̃′(id), Ṽ 〉T (Ωk)∗,T (Ωk)

= 〈λ̃k, Ẽτ̃ (ỹk, id)Ṽ 〉Z(Ωk)∗,Z(Ωk) + 〈J̃τ̃ (ỹk, id), Ṽ 〉T (Ωk)∗,T (Ωk)

for Ṽ ∈ T (Ωk), Ṽ ◦ τk = V , i.e., Ṽ = V ◦ τ−1
k . If we define the linear operator

Bk ∈ L(T (Ωref), T (Ωk)), BkV = V ◦ τ−1
k (2.4)

then we have by our previous calculation

j′(τk) = B∗
k j̃′(id) = B∗

k(Ẽτ̃ (ỹk, id)∗λ̃k + J̃τ̃ (ỹk, id)).

This procedure yields the exact gradient of the reduced objective function and has
the advantage that we are able to use standard PDE-solvers for the state equation
and adjoint equation on the domain Ωk, since we evaluate at τ̃ = id.

2.3. Derivatives with respect to shape parameters

In practice, the shape of a domain is defined by design parameters u ∈ U with a
finite or infinite dimensional design space U . Thus, we have a map τ : U → T (Ωref),
u 7→ τ(u) and a reference control u0 ∈ U with τ(u0) = id. Derivatives of the
reduced objective function j(τ(u)) at uk are obtained using the chain rule. With
τk = τ(uk) and Bk in (2.4) we have

〈
d

du
j(τ(uk)), · 〉U∗,U = 〈j′(τ(uk)), τu(uk) · 〉T (Ωref)∗,T (Ωref)

= 〈j̃′(id), (τu(uk) · ) ◦ τ(uk)−1〉T (Ωk)∗,T (Ωk)

= 〈j̃′(id), Bkτu(uk) · 〉T (Ωk)∗,T (Ωk) = 〈τu(uk)∗B∗
k j̃′(id), · 〉U∗,U .

Overall, this approach provides a flexible framework that can be used for arbitrary
types of transformations (e.g. boundary displacements, free form deformation).
The idea of using transformations to describe varying domains can be found, e.g.,
in Murat and Simon [17] and Guillaume and Masmoudi [8].

3. Shape optimization for the Navier-Stokes equations

We now apply this approach to shape optimization problems governed by the insta-
tionary Navier-Stokes equations for a viscous, incompressible fluid on a bounded
domain Ω = τ(Ωref) with Lipschitz boundary. According to our convention, we
will denote all quantities on the physical domain by .̃
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Let ΓD ⊂ ∂Ω be a nonempty Dirichlet boundary and ΓN = ∂Ω \ ΓD. We
consider the problem ṽ

∂ṽ

∂t
− ν∆ṽ + (ṽ · ∇)ṽ + ∇p̃ = f̃ on Ω × I

div ṽ = 0 on Ω × I

ṽ = ṽD on ΓD × I

p̃ ñ − ν
∂ṽ

∂ñ
= 0 on ΓN × I

ṽ(·, 0) = ṽ0 on Ω

where ṽ : Ω × I → R
d denotes the velocity ṽ(x, t) and p̃ : Ω × I → R the pressure

p̃(x, t) of the fluid at a point x at time t, ñ : ∂Ω → R
d is the outer unit normal

and d = 2 or 3 is the space dimension. Here I = (0, T ), T > 0 is the time interval
and ν > 0 is the kinematic viscosity; if the equations are written in dimensionless
form, ν can be interpreted as 1/Re where Re is the Reynolds number.

We introduce the spaces

H1
D(Ω) := {ṽ ∈ H1(Ω)d : ṽ|ΓD

= 0}, V := {ṽ ∈ H1
D(Ω)d : div ṽ = 0},

H := clL2(V ), L2
0(Ω) := {p̃ ∈ L2(Ω) :

∫

Ω

p̃ = 0}

the corresponding Gelfand triple V →֒ H →֒ V ∗ and define

W2,q(I;V ) := {ṽ ∈ L2(I;V ) : ṽt ∈ Lq(I;V ∗)}.

Now let

ṽD ∈ H1(Ω), div ṽD = 0, f̃ ∈ L2(I;V ∗), ṽ0 ∈ H.

Under these assumptions the following results are known.

• If ΓD = ∂Ω, i.e. ΓN = ∅, then for d = 2 there exists a unique weak solution
(ṽ, p̃) with ṽ − ṽD ∈ W2,2(I;V ) and p̃(·, t) ∈ L2

0(Ω), t ∈ I. For d = 3 there
exists a weak solution (ṽ, p̃) with ṽ − ṽD ∈ W2,4/3(I;V ) ∩ L∞(I;H) and

p̃(·, t) ∈ L2
0(Ω), t ∈ I, which is not necessarily unique. For the case ṽD = 0

the proofs can be found for example in [19, Ch. III]. These proofs can be
extended to ṽD 6= 0 under the above assumptions on ṽD.

• If ΓN 6= ∅ and ΓD satisfies some geometric properties (for example, all x ∈ Ω
can be connected in all coordinate directions by a line segment in Ω to a
point in ΓD) and if a sequence of Galerkin approximations exists that does
not exhibit inflow on ΓN then the same can be shown as for the Dirichlet case:
For d = 2 there exists a unique weak solution (ṽ, p̃) with ṽ−vD ∈ W2,2(I;V )
and p̃(·, t) ∈ L2

0(Ω), t ∈ I. For d = 3 there exists a weak solution (v, p̃) with
ṽ − ṽD ∈ W2,4/3(I;V ) ∩ L∞(I;H) and p̃(·, t) ∈ L2

0(Ω), t ∈ I, which is not
necessarily unique. In fact, in the case without inflow on ΓN all additional
boundary terms have the correct sign such that the proofs in [19, Ch. III] for
the Dirichlet case can be adapted.
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In the case of possible inflow an existence and uniqueness result local in
time and for small data global in time can be found in [10].

3.1. Weak formulation

In the following we consider the case d = 2 and ΓN = ∅ to have a general global
existence and uniqueness result at hand. Moreover, to avoid technicalities in for-
mulating the equations, we consider homogeneous boundary data ṽD ≡ 0. Then
we have H1

D(Ω) = H1
0 (Ω)d with the above notations.

The classical weak formulation is now: Find ṽ ∈ W2,2(I;V ) such that

d

dt
〈ṽ(·, t), w̃〉V ∗,V +

∫

Ω

ṽ(t, x)T∇ṽ(t, x)w̃(x) dx +

∫

Ω

ν∇ṽ(t, x) : ∇w̃(x) dx

=

∫

Ω

f̃(t, x)T w̃(x) dx ∀ w̃ ∈ V for a.a. t ∈ I

ṽ(·, 0) = ṽ0.

(3.1)

As mentioned above, for f̃ ∈ L2(I;V ∗) and ṽ0 ∈ H there exists a unique weak
solution ṽ ∈ W2,2(I;V ). The pressure p̃(·, t) ∈ L2

0(Ω), t ∈ I, is now uniquely
determined, see [19, Ch. III].

The weak formulation (3.1) is equivalent to the following velocity-pressure
formulation: Find ṽ ∈ W2,2(I;H1

0 (Ω)d) and p̃(·, t) ∈ L2
0(Ω), t ∈ I, such that

d

dt
〈ṽ(·, t), w̃〉H−1,H1

0
+

∫

Ω

ṽ(t, x)T∇ṽ(t, x)w̃(x) dx +

∫

Ω

ν∇ṽ(t, x) : ∇w̃(x) dx

−

∫

Ω

p̃(x, t) div w̃(x) dx =

∫

Ω

f̃(t, x)T w̃(x) dx ∀ w̃ ∈ H1
0 (Ω) for a.a. t ∈ I

∫

Ω

q̃(x) div ṽ(x, t) = 0 ∀ q̃ ∈ L2
0(Ω) for a.a. t ∈ I

ṽ(·, 0) = ṽ0.

To obtain a weak velocity-pressure formulation in space-time, which is convenient
for adjoint calculations, we have to ensure that p̃ ∈ L2(I;L2

0(Ω)). To this end we

assume that the data f̃ and ṽ0 are sufficiently regular, for example, see [19, Ch.
III, Thm. 3.5],

f̃ , f̃ t ∈ L2(I;V ∗), f̃(·, 0) ∈ H, ṽ0 ∈ V ∩ H2(Ω). (3.2)

Define the spaces

Y (Ω) := W (I;H1
0 (Ω)d) × L2(I;L2

0(Ω)), (3.3)

Z(Ω) := L2(I;H−1(Ω)d) × L2(I;L2
0(Ω)).

Then

Z∗(Ω) := L2(I;H1
0 (Ω)d) × L2(I;L2

0(Ω))
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and the weak formulation (3.1) is equivalent to: Find (ṽ, p̃) ∈ Y (Ω), where Ω =
τ(Ωref) such that

〈(w̃, q̃), Ē((ṽ, p̃),Ω)〉Z∗(Ω),Z(Ω) =

=

∫

Ω

ṽ(x, 0)T w̃(x, 0) dx −

∫

Ω

ṽT
0 w̃(·, 0) dx

+

∫

I

∫

Ω

ṽT
t w̃ dx dt +

∫

I

∫

Ω

ν∇ṽ : ∇w̃ dx dt

+

∫

I

∫

Ω

ṽT∇ṽw̃ dx dt −

∫

I

∫

Ω

p̃ div w̃ dx dt

−

∫

I

∫

Ω

f̃
T
w̃ dx dt +

∫

I

∫

Ω

q̃ div ṽ dx dt = 0 ∀ (w̃, q̃) ∈ Z∗(Ω).

(3.4)

This formulation defines now the state equation operator

Ē : {(ỹ,Ω) : ỹ ∈ Y (Ω),Ω ∈ Oad} → {z̃ : z̃ ∈ Z(Ω),Ω ∈ Oad} .

3.2. Transformation to the reference domain

In the following we assume that

(T) Ωref is a bounded Lipschitz domain and Ω′ ⊃ Ω̄ref is open and bounded with
Lipschitz boundary. Moreover Tad ⊂ W 2,∞(Ω′) is bounded such that for all
τ ∈ Tad the mappings τ : Ω̄ref → τ(Ω̄ref) are bi-Lipschitzean and satisfy
det(τ ′) ≥ δ > 0, with a constant δ > 0. Here, τ ′(x) = ∇τ(x)T denotes the
Jacobian of τ .
Moreover, the data ṽ0, f̃ are given such that

f̃ ∈ C1(I;V (Ω)), ṽ0 ∈ V (Ω) ∩ H2(Ω) ∀Ω ∈ Oad = {τ(Ωref) : τ ∈ Tad},

i.e. the data ṽ0, f̃0 are used on all Ω ∈ Oad.

Then assumption (T) ensures in particular (3.2) and assumption (A) holds in the
following obvious version for time dependent problems, where the transformation
acts only in space.

Lemma 3.1. Let Tad satisfy assumption (T). Then the state space Y (Ω) defined in

(3.3) satisfies assumption (A), more precisely,

Y (Ωref) = {(ṽ, p̃)(τ(·), ·) : (ṽ, p̃) ∈ Y (τ(Ωref))}

(ṽ, p̃) ∈ Y (τ(Ωref)) 7→ (v, p) := (ṽ, p̃)(τ(·), ·) ∈ Y (Ωref) is a homeom.

}

∀ τ ∈ Tad.

A proof of this result is beyond the scope of this paper and will be given
elsewhere.

Given the weak formulation of the Navier-Stokes equations on a domain
τ(Ωref) we can apply the transformation rule for integrals to obtain a variational
formulation based on the domain Ωref. Using our convention to write˜for a function
that is defined on τ(Ωref) we use the identifications

v(x, t) := ṽ(τ(x), t), p(x, t) := p̃(τ(x), t),
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etc. and the identity

∇x̃z̃(τ(x)) = τ ′(x)−T∇xz(x), x ∈ Ωref.

Using this formalism we get for example

∫

I

∫

τ(Ωref)

ν∇ṽ : ∇w̃ dx dt =

∫

I

d
∑

i=1

∫

Ωref

ν∇vT
i τ ′−1τ ′−T∇wi det τ ′ dx dt.

In this way and by using Lemma 3.1 we arrive at the following equivalent form
of the weak formulation (3.4) on τ(Ωref), which is only based on the domain Ωref:
Find (v, p) ∈ Y (Ωref) such that for all (w, q) ∈ Z∗(Ωref)

〈(w, q), E((v, p), τ)〉Z∗(Ωref),Z(Ωref) =

=

∫

Ωref

v(x, 0)T w(x, 0) det τ ′ dx −

∫

Ωref

ṽ0(τ(x))T w(x, 0) det τ ′ dx

+

∫

I

∫

Ωref

vT
t w det τ ′ dx dt +

d
∑

i=1

∫

I

∫

Ωref

ν∇vT
i τ ′−1τ ′−T∇wi det τ ′ dx dt

+

∫

I

∫

Ωref

vT τ ′−T∇v w det τ ′ dx dt −

∫

I

∫

Ωref

p tr(τ ′−T∇w) det τ ′ dx dt

−

∫

I

∫

Ωref

f̃(τ(x), t)T w det τ ′ dx dt +

∫

I

∫

Ωref

q tr(τ ′−T∇v) det τ ′ dx dt = 0.

(3.5)

For τ = id we recover directly the weak formulation (3.4) on the domain Ω = Ωref,
for general τ ∈ Tad we obtain an equivalent form of (3.4) on the domain Ω =
τ(Ωref).

3.3. Objective function

We consider an objective functional J̄ defined on the domain τ(Ωref) of the type

J̄((ṽ, p̃), τ(Ωref)) =

∫

I

∫

τ(Ωref)

f1(x, ṽ(x, t),∇ṽ(x, t), p̃(x, t)) dx dt

+

∫

τ(Ωref)

f2(x, ṽ(x, T )) dx

(3.6)

with f1 :
⋃

τ∈Tad
τ(Ωref)×R

2 ×R
2,2 ×R and f2 :

⋃

τ∈Tad
τ(Ωref)×R

2 → R. Again
we transform the objective function to the reference domain Ωref.

J̄((ṽ, p̃), τ(Ωref)) =

∫

I

∫

Ωref

f1(τ(x),v(x, t), τ ′(x)−T∇v(x, t), p(x, t)) det τ ′ dx dt

+

∫

Ωref

f2(τ(x),v(x, T )) det τ ′ dx

=: JD((v, p), τ) + JT (v, τ) = J((v, p), τ).
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3.4. Adjoint equation

We apply now the adjoint procedure of subsection 2.2.1 to compute the shape gra-
dient. To this end, we have to compute the Lagrange multipliers (λ, µ) ∈ Z∗(Ωref)
by solving the adjoint system (2.2), which reads in this case

〈(λ, µ), E(v,p)((v, p), τ)(w, q)〉Z∗(Ωref),Z(Ωref)

= −〈J(v,p)((v, p), τ), (w, q)〉Y ∗(Ωref),Y (Ωref) ∀(w, q) ∈ Y (Ωref)

with the given weak solution (v, p) ∈ Y (Ωref) of the state equation. In detail we
seek (λ, µ) ∈ Z∗(Ωref) with

−

∫

I

∫

Ωref

wT λt det τ ′ dt dx +

∫

Ωref

w(x, T )T λ(x, T ) det τ ′ dx

+

∫

I

d
∑

i=1

∫

Ωref

ν∇wT
i τ ′−1τ ′−T∇(λ)i det τ ′ dx dt

+

∫

I

∫

Ωref

(

wT τ ′−T∇v + vT τ ′−T∇w
)

λdet τ ′ dx dt

−

∫

I

∫

Ωref

q tr(τ ′−T∇λ) det τ ′ dx dt +

∫

I

∫

Ωref

µ tr(τ ′−T∇w) det τ ′ dx dt

= −〈J(v,p)((v, p), τ), (w, q)〉Y ∗(Ωref),Y (Ωref) ∀(w, q) ∈ Y (Ωref).

(3.7)

For τ = id this is the weak formulation of the usual adjoint system of the Navier-
Stokes equations on Ωref, which reads in strong form

−λt − ν∆λ − (∇λ)T v + (∇v)λ −∇µ = −JD
v

((v, p), id) on Ωref × I

− div λ = −JD
p ((v, p), id) on Ωref × I

λ = 0 on ∂Ωref × I

λ(·, T ) = −JT
v

(v, id) on Ωref

For general τ ∈ Tad the adjoint system (3.7) is equivalent to the usual adjoint
system of the Navier-Stokes equations on τ(Ωref). A detailed analysis of the adjoint
equation of the Navier-Stokes equations can be found in [11, 21]

3.5. Calculation of the shape gradient

The derivative of the reduced objective j(τ) := J((v(τ), p(τ)), τ) is now given by
(2.3), which reads in our case

〈j′(τ), · 〉T∗(Ωref),T (Ωref) =

〈(λ, µ), Eτ ((v, p), τ) · 〉Z∗(Ωref),Z(Ωref) + 〈Jτ ((v, p), τ), · 〉T∗(Ωref),T (Ωref).
(3.8)

To state this in detail, we have to compute the derivatives of E and J with respect
to τ . Let (v, p) and (λ, µ) be the solution of the Navier-Stokes equations (3.5) and
the corresponding adjoint equation (3.7) for given τ ∈ Tad. Using the formulation
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(3.5) of E on the reference domain Ωref the first term can be expressed as

〈(λ, µ), Eτ ((v, p), τ)V 〉Z∗(Ωref),Z(Ωref) =

=

∫

Ωref

(v(x, 0) − ṽ0(τ(x)))T λ(x, 0) tr(τ ′−1V ′) det τ ′ dx

−

∫

Ωref

V T∇ṽ0(τ(x))λ(x, 0) det τ ′ dx +

∫

I

∫

Ωref

vT
t λ tr(τ ′−1V ′) det τ ′ dx dt

+

d
∑

i=1

∫

I

∫

Ωref

ν∇vT
i τ ′−1( tr(τ ′−1V ′)I − V ′τ ′−1 − τ ′−T V ′T )τ ′−T∇λi det τ ′ dx dt

+

∫

I

∫

Ωref

vT ( tr(τ ′−1V ′)I − τ ′−T V ′T )τ ′−T∇vλdet τ ′ dx dt

+

∫

I

∫

Ωref

p
(

tr(τ ′−T V ′T τ ′−T∇λ) − tr(τ ′−T∇λ) tr(τ ′−1V ′)
)

det τ ′ dx dt

−

∫

I

∫

Ωref

(

f̃(τ(x), t)T tr(τ ′−1V ′) + V T∇f̃(τ(x), t)
)

λdet τ ′ dx dt

−

∫

I

∫

Ωref

µ
(

tr(τ ′−T V ′T τ ′−T∇v) − tr(τ ′−T∇v) tr(τ ′−1V ′)
)

det τ ′ dx dt.

If ṽ solves the state equation then the first term vanishes.

The part with the objective functional is given by

〈Jτ ((v, p), τ), V 〉T∗(Ωref),T (Ωref) =

=

∫

I

∫

Ωref

f1(τ(x),v, τ ′(x)−T∇v(x, t), p) tr(τ ′−1V ′) det τ ′ dx dt

−

∫

I

∫

Ωref

∂

∂(∇ṽ)
f1(τ(x),v, τ ′(x)−T∇v(x, t), p) τ ′−T V ′T τ ′−T∇v det τ ′ dx dt

+

∫

I

∫

Ωref

∂

∂x̃
f1(τ(x),v, τ ′(x)−T∇v(x, t), p)V det τ ′ dx dt

+

∫

Ωref

f2(τ(x),v(x, T )) tr(τ ′−1V ′) det τ ′ dx

+

∫

Ωref

∂

∂x̃
f2(τ(x),v(x, T ))V det τ ′ dx.
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If τ = id, i.e. τ(Ωref) = Ωref we obtain the following formula for reduced gradient,
where we omit the first term, since v(·, 0) = ṽ0(τ(·)).

〈j′(id), V 〉T∗(Ωref),T (Ωref) =

−

∫

Ωref

V T∇ṽ0(x)λ(x, 0) dx

+

∫

I

∫

Ωref

vT
t λ div V dx dt +

∫

I

∫

Ωref

ν∇v : ∇λ div V dx dt

−
d

∑

i=1

∫

I

∫

Ωref

ν∇vT
i (V ′ + V ′T )∇λi dx dt

−

∫

I

∫

Ωref

vT V ′T∇vλ dx dt +

∫

I

∫

Ωref

vT∇vλ div V dx dt

+

∫

I

∫

Ωref

p tr(V ′T∇λ) dx dt −

∫

I

∫

Ωref

p div λ div V dx dt

−

∫

I

∫

Ωref

f̃
T
λ div V dx dt −

∫

I

∫

Ωref

V T∇f̃λ dx dt

−

∫

I

∫

Ωref

µ tr(V ′T∇v) dx dt +

∫

I

∫

Ωref

µ div v div V dx dt

+

∫

I

∫

Ωref

f1(x,v,∇v, p) div V dx dt

−

∫

I

∫

Ωref

∂

∂(∇ṽ)
f1(x,v,∇v, p)V ′T∇v dx dt

+

∫

I

∫

Ωref

∂

∂x̃
f1(x,v,∇v, p)V dx dt

+

∫

Ωref

f2(x,v(x, T )) div V dx

+

∫

Ωref

∂

∂x̃
f2(x,v(x, T ))V dx.

(3.9)

Remark 3.2. As already mentioned in subsection 2.2.2, for computational pur-
poses it is convenient for a given iterate τk to calculate the reduced gradient
on the domain Ωk. As described in detail in 2.2.2 we have to solve the Navier-
Stokes equations and the adjoint system on Ωk. Using 〈j′(τk), V 〉T∗(Ωref),T (Ωref) =

〈j̃′(id), Ṽ 〉T∗(Ωk),T (Ωk) we can take the formula above replacing Ωref by Ωk and
using the corresponding functions defined on Ωk.

Finally, if we assume more regularity for the state and adjoint, we can in-
tegrate by parts in the above formula and can represent the shape gradient as a
functional on the boundary.

However, we prefer to work with the distributed version (3.8), since it is
also appropriate for FE-Galerkin approximations, while the integration by parts
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to obtain the boundary representation is not justified for FE-discretizations with
H1-elements. In addition, (3.8) can also easily be transferred to a boundary repre-
sentation by using the procedure of subsection 2.3 with a boundary displacement-
to-domain transformation mapping u 7→ τ(u) ∈ Tad. For Galerkin discretization
the continuous adjoint calculus can then easily be applied on the discrete level.

4. Discretization

To discretize the instationary Navier-Stokes equations, we use the cG(1)dG(0)
space-time finite element method, which uses piecewise constant finite elements in
time and piecewise linear finite elements in space. The cG(1)dG(0) method is a
variant of the General Galerkin G2-method developed by Eriksson, Estep, Hansbo,
and Johnson [4, 5].

Let I = {Ij = (tj−1, tj ] : 1 ≤ j ≤ N} be a partition of the time interval (0, T ]
with a sequence of discrete time steps 0 = t0 < t1 < · · · < tN = T and length of
the respective time intervals kj := |Ij | = tj − tj−1.

With each time step tj , we associate a partition Tj of the spatial domain Ω

and the finite element subspaces V j
h , P j

h of continuous piecewise linear functions
in space.

The cG(1)dG(0) space-time finite element discretization with stabilization
can be written as an implicit Euler scheme: v0

h = v0 and for j = 1 . . . N , find

(vj
h, pj

h) ∈ V j
h × P j

h such that

(Ej(vh, ph),wh) :=

:=

(

v
j
h − v

j−1
h

kj
,wh

)

+ (ν∇v
j
h,∇wh) + (vj

h · ∇v
j
h,wh) − (pj

h, div wh)

+ ( div v
j
h, qh) + SDδ(v

j
h, pj

h,wh, qh) − (f,wh) = 0 ∀(wh, qh) ∈ V j
h × P j

h

with stabilization

SDδ(v
j
h, pj

h,wh, qh) =
(

δ1(v
j
h · ∇v

j
h + ∇pj

h − f),vj
h · ∇wh + ∇qh

)

+ (δ2 div v
j
h, div wh) .

The stabilization parameters

δ1 =

{

1
2 (k−2

j + |vj
h|

2h−2
j )−1/2 if ν < |vj

h|hj

κ1h
2
j otherwise

, δ2 =

{

κ2hj if ν < |vj
h|hj

κ2h
2
j otherwise

act as a subgrid model in the convection-dominated case ν < |vj
h|hj , where hj

denotes the local (spatial) meshsize at time j and κ1 and κ2 are constants of unit
size.
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As discrete objective functional, we consider

Jh(vh, ph) =
N

∑

j=1

kj

∫

Ω

f1(x,vj
h,∇v

j
h, pj

h) dx +

∫

Ω

f2(x,vN
h ) dx

=: JD,h(vh, ph) + JT,h(vN
h ).

This is exactly J(vh, ph), since vh, ph are piecewise constant in time.

In order to obtain gradients which are exact on the discrete level, we consider
the discrete Lagrangian functional based on the cG(1)dG(0) finite element method,
which is given by

Lh(vh, ph,λh) = Jh(vh, ph) +

N
∑

j=1

kj(E
j(vh, ph),λj

h).

Note again that this is exactly L(vh, ph,λh), since vh, ph,λh are piecewise constant
in time.

Now we take the derivatives of the discretize Lagrangian w.r.t. the state
variables to obtain the discrete adjoint equation and w.r.t. the shape variables to
obtain the reduced gradient.

The discrete adjoint system can be cast in the form of an implicit time-
stepping scheme backward in time: For j = N − 1, . . . , 0, find (λj

h,µj
h) ∈ V j

h × P j
h

such that

(λj
h,wh)

kj
+ (ν∇λ

j
h,∇wh) + (µj

h, div wh) − (qh, div λ
j
h)

+ (vj
h · ∇wh,λj

h) + (wh · ∇v
j
h,λj

h) + SD∗
δ (vj

h, pj
h,λj

h, µj
h;wh, qh)

=
(λj+1

h ,wh)

kj
−

1

kj
〈JD,h

v
j

h

(vh, ph),wh〉 −
1

kj
〈JD,h

pj

h

(vh, ph), qh〉

∀(wh, qh) ∈ V j
h × P j

h ,

where the discrete initial adjoint (λN
h , µN

h ) solves the system

λN
h · wh

kN
+ (ν∇λN

h ,∇wh) + (µN
h , div wh) + (vN

h · ∇wh,λN
h )

+ (wh · ∇vN
h ,λN

h ) − (qh, div λN
h ) + SD∗

δ (vN
h , pN

h ,λN
h , µN

h ;wh, qh)

= −
1

kN
〈JD,h

v
N (vh, ph),wh〉 −

1

kN
〈JT,h

v
N
h

(vN
h ),wh〉 −

1

kN
〈JD,

pN
h

(vh, ph), qh〉

for all (wh, qh) ∈ V N
h × PN

h .
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The adjoint stabilization term SD∗
δ is given by

SD∗
δ (vj

h, pj
h,λj

h, µj
h;wh, qh)

= δ1(w · ∇v,v · ∇λ) + δ1(v · ∇w,v · ∇λ) + δ1(v · ∇v,w · ∇λ)

+ δ1(∇q,∇µ) + δ2( div w, div λ)

+ δ1(w · ∇v,∇µ) + δ1(v · ∇w,∇µ)

+ δ1(∇q,v · ∇λ) + δ1(∇p,w · ∇λ) .

For simplicity, we have neglected the terms containing the right-hand-side f and
the dependence of δ1 on v.

To compute shape derivatives on the discrete level we use a transformation
space Th(Ωref) of piecewise linear continuous functions. Then a discrete version of
assumption (A) holds, i.e., the finite element space remains after transformation
the space of continuous piecewise linear functions in space. The same holds for
higher order finite elements. Therefore, an analogue of (3.9) holds also on the
discrete level if a Galerkin method is used and we obtain easily the exact shape
derivative, if the adjoint state is computed by the exact discrete adjoint equation
stated above. In this way we have obtained the exact shape derivative on the
discrete level by using a continuous adjoint approach without the tedious task of
computing mesh sensitivities.

5. Numerical results

In this section we demonstrate the adjoint shape derivative calculus on a numerical
model problem. In particular, we consider an incompressible instationary flow
around an object B for which the drag shall be minimized.

5.1. Problem description

The model problem is based on the DFG benchmark of a 2D instationary flow
around a cylinder [20], see Figure 1. We prescribe a fixed parabolic inflow profile
on the left boundary Γin with vmax = 1.5m/s, noslip boundary conditions on
the top and bottom boundaries, as well as on the object boundary ΓB , and a
free outflow condition on the right boundary Γout. The flow is modeled by the
instationary incompressible Navier-Stokes equations, with viscosity ν = 10−4. The
Navier-Stokes equations are discretized with the cG(1)dG(0) finite element method
presented above, with a fixed time step size k = 10−2 and a triangular spatial mesh
with about 4100 vertices and 7900 elements.

The object boundary ΓB is parametrized using a cubic B-Spline curve with
7 control points for the upper half of ΓB, which is reflected at the y = 0.2-axis
to obtain a y-symmetric closed curve. This parametrization allows for apices at
the front and rear of the object, while the remaining boundary is C2. We impose
constraints on the volume of the object B as well as bound constraints on the
control points. Using the coordinates of the control points as design parameters,
we arrive at an optimization problem with 14 design variables, 12 of which are free
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(0, 0) (2.2, 0)

(2.2, 0.41)(0, 0.41)

� in � out

noslip

noslip

� B

Figure 1. DFG-Benchmark flow around a cylinder; sketch of the geometry

(2 design parameters are fixed as we have to ensure that the y-coordinates of the
first and last B-spline curve points equal 0.2 in order for the curve to be closed).

We compute the mean value of the drag on the object boundary ΓB over the
time interval [0, T ] by using the formula

J((ṽ, p̃),Ω) =
1

T

∫ T

0

∫

Ω

(

(ṽt + (ṽ · ∇)ṽ − f̃)T
Φ − p̃ div Φ + ν∇ṽ : ∇Φ

)

dx dt.

(5.1)
Here, Φ is a smooth function such that with a unit vector φ pointing in the mean
flow direction holds

Φ|ΓB
≡ φ, Φ|∂Ω\ΓB

≡ 0 ∀Ω ∈ Oad.

This formula is an alternative formula for the mean value of the drag on ΓB ,

cd :=
1

T

∫ T

0

∫

ΓB

n · σ(ṽ, p̃) · φ dS,

with normal vector n and stress tensor σ(ṽ, p̃) = ν 1
2 (∇ṽ + (∇ṽ)T ) − p̃ I, and

can be obtained through integration by parts. For a detailed derivation, see [12].
Inegration by parts in the time derivative shows that (5.1) can also be written as

J((ṽ, p̃),Ω) =
1

T

∫ T

0

∫

Ω

(

((ṽ · ∇)ṽ − f̃)T
Φ − p̃ div Φ + ν∇ṽ : ∇Φ

)

dx dt

+
1

T

∫

Ω

(ṽ(x, T ) − ṽ0(x))T
Φ(x) dx.

(5.1)

Thus the drag functional (5.1) has the form (3.6). Moreover, using the well known
embedding Y (Ω) →֒ C(I;L2(Ω)d) × L2

0(Ω) it is easy to see that (ṽ, p̃) ∈ Y (Ω) 7→
J((ṽ, p̃),Ω) is continuously differentiable if Φ ∈ W 1,∞(R2)2.

Computation of the state, adjoint and shape derivative equations is done
using Dolfin [14], which is part of the FEniCS project [7]. The optimization is
carried out using the interior point solver IPOPT [22], with a BFGS-approximation
for the reduced Hessian.
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5.2. Choice of shape parameters and shape deformation techniques

One aspect to consider in the implementation of shape optimization algorithms
is the choice of the shape parameters and the shape deformation technique. Gen-
erally speaking, shape parametrizations and deformations fall into two classes.
In the first case, a parametrization directly defines the whole domain, which can
be accomplished by using, e.g., free form deformation. In the second case, the
parametrization determines the shape of the surface ΓB of the object B. Exam-
ples for this kind of parametrizations can be B-splines, NURBS, but also the set of
boundary points ΓB itself, if considered in an appropriate function space. Changes
in the shape of the boundary ΓB then have to be transfered to changes of the
domain Ωref. This can be done in various ways, see, e.g., [2].

In our model problem, we have chosen a parametrization of the object bound-
ary ΓB based on closed cubic B-spline curves [16], where the B-spline control
points act as design parameters u. The transformation of boundary displacements
to displacements of the domain is done by solving an elasticity equation, where
we prescribe the displacement of the object boundary as inhomogeneous Dirichlet
boundary data [2]. The computational domains Ωk := Ω(τ(uk)) are obtained as
transformations of a triangulation of the domain shown in Figure 1. As described
at the end of section 4 we use piecewise linear transformations to ensure a dis-
crete analogue of assumption (A). Then by an analogue of (3.9) together with the
discrete adjoint equation we obtained conveniently by a continuous adjoint calcu-
lus the exact shape derivative on the discrete level – which we have also checked
numerically.

5.3. Results

The IPOPT-algorithm needs 15 interior-point iterations for converging to a tol-
erance of 10−3, altogether needing 17 state equation solves and 16 adjoint solves.
The drag value in the optimal shape is reduced by nearly one third in comparison
to the initial shape. In the optimal solution, bound constraints for 8 of the design
parameters are active, while 6 are inactive. The results of the optimization process
are summarized in Table 1.

Figure 2 shows the velocity fields for the initial and optimal shape, with
snapshots taken at end time, while Figure 3 shows the computational mesh both for
the initial and the optimal shape. Both meshes are obtained by a transformation of
the same reference mesh with a circular object, cf. Figure 1, by solving an elasticity
equation with fixed displacement of the object boundary.

6. Conclusions and outlook

In this paper, we have presented a continuous adjoint approach that can easily be
transferred in an exact way to the discrete level, if a Galerkin method in space
is used. We use a domain representation of the shape gradient, since a boundary
representation requires integration by parts, which is usually not justified on the
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iteration objective dual infeasibility linesarch-steps
0 1.2157690e-1 1.69e+0 0
1 1.0209697e-1 1.53e+0 2
2 9.7036722e-2 3.60e-1 1
3 8.7039312e-2 6.44e-1 1
4 8.4563185e-2 5.08e-1 1
5 8.3512670e-2 1.01e-1 1
6 8.2813890e-2 1.22e-1 1
7 8.2516118e-2 8.96e-2 1
8 8.2069666e-2 1.42e-1 1
9 8.2062288e-2 1.39e-1 1
10 8.1995990e-2 1.80e-2 1
11 8.1994727e-2 6.55e-3 1
12 8.1995485e-2 2.76e-3 1
13 8.1995822e-2 2.72e-3 1
14 8.1995966e-2 1.32e-3 1
15 8.1995811e-2 2.66e-5 1

Table 1. Optimization Results

discrete level. Nevertheless, adjoint based gradient representations can easily be
derived from our gradient representation, e.g., for the boundary shape gradient
in function space, but also for shape parametrizations, for example free form de-
formation or parametrized boundary displacement. The proposed approach allows
the solution of the state equation and adjoint equation on the physical domain.
Therefore existing solvers of the partial differential equation and its adjoint can
be used.

We have applied our approach to the instationary incompressible Navier-
Stokes equations. In the context of the stabilized cG(1)dG(0) method – but also
for other Galerkin schemes and other types of partial differential equations – we
were able to derive conveniently the exact discrete shape derivative, since our
calculus is exact on the discrete level, if some simple rules are followed.

The combination with error estimators and multilevel techniques is subject of
current research. Our results indicate that these techniques can reduce the number
of optimization iterations on the fine grids and the necessary degrees of freedom
significantly. We leave these results to a future paper.
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